急,跪等答案! 求微分方程y''+(2/1-y)*(y')^2=0的通解
展开全部
解:令y'=p,则y''=pdp/dy 代入原方程,化简得 p[dp/dy-2p/(y-1)]=0 ==>p=0,或dp/dy-2p/(y-1)=0 显然,p=0是dp/dy-2p/(y-1)=0的解 又,由dp/dy-2p/(y-1)=0,得 dp/dy=2p/(y-1) ==>dp/p=2dy/(y-1) ==>ln│p│=2ln│y-1│+ln│C1│ ==>p=C1(y-1)² (∵p=0是一个解,∴C1是任意常数) ==>y'=C1(y-1)² ==>dy/(y-1)²=C1dx ==>1/(1-y)=C1x+C2 (C2是任意常数) ==>(C1x+C2)(1-y)=1 故原方程的通解是 (C1x+C2)(1-y)=1 (C1,C2是任意常数)。
这才对好么?
这才对好么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询