已知函数f(x)=kx,g(X)=(lnx)/x 若不等式f(x)≥g(X)在区间(0,+∞)上恒成立,求K的取值范围

liliping2038
2011-06-10 · TA获得超过6222个赞
知道大有可为答主
回答量:1196
采纳率:100%
帮助的人:548万
展开全部
f(x)-g(x)=kx-(lnx)/x =(kx²-lnx)/x ‎(x>0),
令h(x)=kx²-lnx,
当k<0时,h(1)=k-ln1=k<0,f(1)-g(1)<0,f(1)<g(1),不合题意,
当k=0时,f(x)=0,g(x)=(lnx)/x,当x>1时,g(x)>0,f(x)<g(x),不合题意,
当k>0时,
h'(x)=2kx-1/x=(2kx²-1)/x,
令h'(x)=0,得,2kx²=1,kx²=1/2,x=√[1/(2k)] (x>0)
当x>√[1/(2k)]时2kx²-1>0,
当x<√[1/(2k)]时2kx²-1<0,
所以x=√[1/(2k)] 为h(x)在(0,+∞)上的唯一极小值点,即最小值点,
h(x)在(0,+∞)上的最小值为h{√[1/(2k)]}=k{√[1/(2k)]}²-ln{√[1/(2k)]}=1/2-(1/2)ln[1/(2k)]=(1/2){1-ln[1/(2k)]},
要使不等式f(x)≥g(X)在区间(0,+∞)上恒成立,则须f(x)-g(x)=(kx²-lnx)/x=[h(x)]/x>=0(x>0)恒成立
即h(x)>=0恒成立,则须h(x)最小值)(1/2){1-ln[1/(2k)]}>=0,即1-ln[1/(2k)]>=0,ln[1/(2k)]<=1=lne,
0<1/(2k)<=e,2k>=1/e,即k>=1/(2e).
综上,若不等式f(x)≥g(X)在区间(0,+∞)上恒成立,k的取值范围为[1/(2e),+∞).
6626zhyy
2011-06-10 · TA获得超过747个赞
知道答主
回答量:106
采纳率:0%
帮助的人:168万
展开全部
解:由f(x)≥g(X)得kx-(lnx)/x≥0
则k≥(lnx)/x²
令h(x)=(lnx)/x²
h’(x)=(x-2xlnx)/x^4=【x(1-2lnx)】/x^4
令h’(x)=0 解得x=根号e
x∈(0,根号e】 h’(x)≥0 h(x)单调递增
x∈(根号e,+∞) h’(x)<0 h(x)单调递减
∴h(x)max=h(根号e)=1/(2e)
∴k≥1/(2e)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-06-12
展开全部
太简单
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式