求幂级数(如下图)的和函数。(解答过程)
2个回答
展开全部
解:令上述幂级数的和函数等于E
E=1+(2^2)x+(3^2)x^2+(4^2)x^3+…………+[(n+1)^2]x^n
xE=x+(2^2)x^2+(3^2)x^3+(4^2)x^4+…………+[(n+1)^2]x^(n+1)
两式相减得:
(1-x)E=1-[(n+1)^2]x^(n+1)+(2^2-1)x+(3^2-2^2)x^2+(4^2-3^2)x^3+…………+[(n+1)^2-n^2]x^n
=[1+3x+5x^2+7x^3+9x^4+…………+(2n+1)x^n]-[(n+1)^2]x^(n+1)
x(1-x)E=[x+3x^2+5x^3+7x^4+…………+(2n-1)x^n+(2n+1)x^(n+1)]-[(n+1)^2]x^(n+2)
两式又相减可得:
(1-x)E - x(1-x)E=(x-1)^2E
=1 - [(n+1)^2]x^(n+1) - (2n+1)x^(n+1) + [(n+1)^2]x^(n+2) +2[x+x^2+x^3+x^4+……+x^n]
=1 - [(n+1)^2]x^(n+1) - (2n+1)x^(n+1) + [(n+1)^2]x^(n+2) + 2[x(1-x)^n]/(1-x)
=[x+1-2.x^(n+1)]/(1-x) + [(n+1)^2]x^(n+2) - (n^2+4n+2)x^(n+1) = (x-1)^2.E
所以E为:
E={[x+1-2.x^(n+1)]/(1-x) + [(n+1)^2]x^(n+2) - (n^2+4n+2)x^(n+1)} / [(x-1)^2]
=[(2.x^(n+1) - (x+1)] /(x-1)^3 + [(n+1)^2.x^(n+2)] /(x-1)^2 - [(n^2+4n+2).x^(n+1)] /(x-1)^2
终于输完了!就是这样的了,希望对楼主有帮助!
E=1+(2^2)x+(3^2)x^2+(4^2)x^3+…………+[(n+1)^2]x^n
xE=x+(2^2)x^2+(3^2)x^3+(4^2)x^4+…………+[(n+1)^2]x^(n+1)
两式相减得:
(1-x)E=1-[(n+1)^2]x^(n+1)+(2^2-1)x+(3^2-2^2)x^2+(4^2-3^2)x^3+…………+[(n+1)^2-n^2]x^n
=[1+3x+5x^2+7x^3+9x^4+…………+(2n+1)x^n]-[(n+1)^2]x^(n+1)
x(1-x)E=[x+3x^2+5x^3+7x^4+…………+(2n-1)x^n+(2n+1)x^(n+1)]-[(n+1)^2]x^(n+2)
两式又相减可得:
(1-x)E - x(1-x)E=(x-1)^2E
=1 - [(n+1)^2]x^(n+1) - (2n+1)x^(n+1) + [(n+1)^2]x^(n+2) +2[x+x^2+x^3+x^4+……+x^n]
=1 - [(n+1)^2]x^(n+1) - (2n+1)x^(n+1) + [(n+1)^2]x^(n+2) + 2[x(1-x)^n]/(1-x)
=[x+1-2.x^(n+1)]/(1-x) + [(n+1)^2]x^(n+2) - (n^2+4n+2)x^(n+1) = (x-1)^2.E
所以E为:
E={[x+1-2.x^(n+1)]/(1-x) + [(n+1)^2]x^(n+2) - (n^2+4n+2)x^(n+1)} / [(x-1)^2]
=[(2.x^(n+1) - (x+1)] /(x-1)^3 + [(n+1)^2.x^(n+2)] /(x-1)^2 - [(n^2+4n+2).x^(n+1)] /(x-1)^2
终于输完了!就是这样的了,希望对楼主有帮助!
意法半导体(中国)投资有限公司
2023-06-12 广告
2023-06-12 广告
单片机,即单片微控制器,也称为单片微型计算机,是将中央处理器(CPU)、存储器(ROM,RAM)、输入/输出接口和其他功能部件集成在一块 在一个小块的集成电路上,从而实现对整个电路或系统的数字式控制。单片机不是完成某一个逻辑功能的芯片,而是...
点击进入详情页
本回答由意法半导体(中国)投资有限公司提供
展开全部
虽然楼上输的很辛苦...
用这个符号表示求和符号∑(n,0,+inf)
对上式逐项积分得到∑(n,0,+inf)(n+1)x^(n+1)
设S=∑(n,0,+inf)(n+1)x^(n+1)=x+2x^2+3x^3++4x^4....
xS=x^2+2x^3+3x^4....
(1-x)S=x+x^2+x^3+.....
由泰勒展开知1/(1-x)=1+x+x^2+...
所以(1-x)S=x(1+x+x^2+..)=x/(1-x)
S=x/(1-x)^2
然后对S求导就得到所求的和式
S‘=(x+1)/(1-x)^3
若满意,请采纳!.....
用这个符号表示求和符号∑(n,0,+inf)
对上式逐项积分得到∑(n,0,+inf)(n+1)x^(n+1)
设S=∑(n,0,+inf)(n+1)x^(n+1)=x+2x^2+3x^3++4x^4....
xS=x^2+2x^3+3x^4....
(1-x)S=x+x^2+x^3+.....
由泰勒展开知1/(1-x)=1+x+x^2+...
所以(1-x)S=x(1+x+x^2+..)=x/(1-x)
S=x/(1-x)^2
然后对S求导就得到所求的和式
S‘=(x+1)/(1-x)^3
若满意,请采纳!.....
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询