积分 ∫e^x²dx

 我来答
秦麦西
2018-07-24 · TA获得超过1971个赞
知道答主
回答量:7
采纳率:100%
帮助的人:2307
展开全部

此题中∫e^(x^2)dx 是超越积分(不可积积分),它的原函数是非常规的。

所以最终的结果是 ∫e^(x^2)dx=1/2 √π erfi(x) + C

注:其中erfi(x)是引入的函数, 它为 x的(余)误差函数,无法取值 。

拓展资料:

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

百度网友ce8d01c
2011-06-11 · 知道合伙人教育行家
百度网友ce8d01c
知道合伙人教育行家
采纳数:20071 获赞数:87099
喜欢数学

向TA提问 私信TA
展开全部
这个积分要化为二重积分才能做
∫∫e^x²e^y²dxdy
=∫∫e^(x²+y²)dxdy
再运用极坐标变换
r^2=x^2+y^2
dxdy=rdrdθ
∫∫e^(x²+y²)dxdy
=∫∫e^r^2*rdrdθ (注意到θ∈[0,2π])
=1/2e^r^2*2π
=πe^r^2+C
所以
∫e^x²dx=√(πe^r^2+C)
由于没有限定上下限,所以是没有办法求出来具体的C值及积分的值。

参考资料:
这是一个超越积分(通常也称为不可积),也就是说这个积分的原函数不能用我们所学的任何一种函数来表示.但如果引入新的函数erf(x)=∫[0,x]e^(-t^2)dt,那么该函数的积分就可表示为erf(x)+c. 道 理很简单,比如∫x^ndx,一般的该积分为1/(n+1)x^(n+1),如果不引入lnx,那么∫1/xdx就不可积了.因此对于一些积分,如果不引 入新的函数,那么那些积分就有可能不可积,而且这种情况还会经常遇到.因此对于一些常见的超越积分,一般都定义了相关的新函数.
下面就介绍几个常见的超越积分(不可积积分)
1.∫e^(ax^2)dx(a≠0)
2.∫(sinx)/xdx
3.∫(cosx)/xdx
4.∫sin(x^2)dx
5.∫cos(x^2)dx
6.∫x^n/lnxdx(n≠-1)
7.∫lnx/(x+a)dx(a≠0)
8.∫(sinx)^zdx(z不是整数)
9.∫dx/√(x^4+a)(a≠0)
10.∫√(1+k(sinx)^2)dx(k≠0,k≠-1)
11.∫dx/√(1+k(sinx)^2)(k≠0,k≠-1)
以后凡是看到以上形式的积分,不要继续尝试,因为以上积分都已经被证明了为不可积积分.但是要注意的是,虽然以上积分的原函数不是初等函数.但并不意味着他们的定积分不可求,对于某些特殊点位置的定积分还是有可能算出来的,只不过不能用牛顿-莱布尼茨公式罢了! 比如∫[0,+∞)e^(-x^2)dx=√π/2,此处的积分值就是用二重积分和极限夹逼的方法得出的,而且只能算出(-∞,+∞)或是(0,+∞)上的值,其他的值只能用数值方法算出近似值.
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陈jin
2011-06-11 · TA获得超过6006个赞
知道大有可为答主
回答量:3337
采纳率:75%
帮助的人:1206万
展开全部
如果是不定积分,目前没有初等结果。如果是求0~inf的广义积分,那用重积分或者Grammar function和beta function的性质计算下就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式