如图,在△ABC中,AB=AC,点D、E分别在BC、AC的延长线上,AD=AE,∠CDE=30°求:∠BAD的度数
1个回答
展开全部
解:
在△ABC中,AB=AC
则有:∠ABC=∠ACB
且∠BAC=180°-2∠ACB
又在△ADE中,AD=AE
则:∠AED=∠ADE,
且∠CAD=180°-2∠AED
所以∠BAD=∠BAC+∠CAD
=180°-2∠ACB+180°-2∠AED
=360°-2(∠ACB+∠AED)
又∠ACB=180°-∠BCE,∠BCE=∠AED+∠CDE=∠AED+30°
所以:∠ACB=180°-(∠AED+30°)=150°-∠AED
即:∠ACB+∠AED=150°
所以:∠BAD=360°-2(∠ACB+∠AED)
=360°-300°
=60°
在△ABC中,AB=AC
则有:∠ABC=∠ACB
且∠BAC=180°-2∠ACB
又在△ADE中,AD=AE
则:∠AED=∠ADE,
且∠CAD=180°-2∠AED
所以∠BAD=∠BAC+∠CAD
=180°-2∠ACB+180°-2∠AED
=360°-2(∠ACB+∠AED)
又∠ACB=180°-∠BCE,∠BCE=∠AED+∠CDE=∠AED+30°
所以:∠ACB=180°-(∠AED+30°)=150°-∠AED
即:∠ACB+∠AED=150°
所以:∠BAD=360°-2(∠ACB+∠AED)
=360°-300°
=60°
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询