已知函数f(x)=x+a/x+b(x≠0),其中a,b∈R,若函数f(x)在(1,2)上为单调函数,求实数a的取值范围。

斌宏茶A
2011-06-11 · 超过19用户采纳过TA的回答
知道答主
回答量:33
采纳率:0%
帮助的人:0
展开全部
因为f(x)=x+a/x+b 所以f‘(x)=1-a/x^2,因为单调,所以1-a/x^2>0或<0在(1,2)恒成立,即a<x^2a>x^2 所以a<1或a>4
(分离参量法)
归艳卉6b
2011-06-11 · TA获得超过3214个赞
知道大有可为答主
回答量:2564
采纳率:52%
帮助的人:710万
展开全部
首先求导,为b-a/(x+b)^2
求单调区间
分两种情况,f(2) 大小比较f(1),
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式