已知函数y=Asin(wx+φ)(x∈R,A,w>0,-π\2<φ<π\2)图像上的一个最高点为P(2,√2),由uzhege最
(1)求这个函数的解析式;(2)写出这个函数的单调区间。由最高点到相邻最低点的曲线与x轴相交于Q(6,0)...
(1)求这个函数的解析式;
(2)写出这个函数的单调区间。
由最高点到相邻最低点的曲线与x轴相交于Q(6,0) 展开
(2)写出这个函数的单调区间。
由最高点到相邻最低点的曲线与x轴相交于Q(6,0) 展开
4个回答
展开全部
解:因为x属于R故sin(wx+φ)的范围在[-1,1],又因为函数最高点为根号2,故A等于正负根号2,又因为A大于0,所以A等于根号2。最高说明2w+φ=2kπ+π/2,6w+φ=2kπ+π,两式相减等4w=π/2,w=π/8,带入第一个式子等φ=2kπ-π/4,又因为-π\2<φ<π\2解出φ= -π/4,
单调增区间为2kπ-π/2<=(wx+φ)<=2kπ+π/2,解出x
单调减区间为2kπ+π/2<=(wx+φ)<=2kπ+3π/2,解出x
这种题目较简单但是容易扣分。做题的时候一定要在意题目上的每一个条件,题目上的每一个条件不会是乱给的。 都有它给的意义。
单调增区间为2kπ-π/2<=(wx+φ)<=2kπ+π/2,解出x
单调减区间为2kπ+π/2<=(wx+φ)<=2kπ+3π/2,解出x
这种题目较简单但是容易扣分。做题的时候一定要在意题目上的每一个条件,题目上的每一个条件不会是乱给的。 都有它给的意义。
展开全部
sin(wx+φ)=1时,y取最大值为2,则A=2,2w+φ=2kπ+π/2,6w+φ=kπ,w>0,-π\2<φ<π\2,解这俩个式子得w,φ
单调增区间为2kπ-π/2<=(wx+φ)<=2kπ+π/2,解出x
单调减区间为2kπ+π/2<=(wx+φ)<=2kπ+3π/2,解出x
单调增区间为2kπ-π/2<=(wx+φ)<=2kπ+π/2,解出x
单调减区间为2kπ+π/2<=(wx+φ)<=2kπ+3π/2,解出x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(wx+φ)=1时,y取最大值为2,则A=2,2w+φ=2kπ+π/2,6w+φ=kπ,w>0,-π\2<φ<π\2,解这俩个式子得w,φ
单调增区间为2kπ-π/2<=(wx+φ)<=2kπ+π/2,解出x
单调减区间为2kπ+π/2<=(wx+φ)<=2kπ+3π/2,解出x
单调增区间为2kπ-π/2<=(wx+φ)<=2kπ+π/2,解出x
单调减区间为2kπ+π/2<=(wx+φ)<=2kπ+3π/2,解出x
追问
谢谢谢谢
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由最高点是2,可以知道到A为2.。只能求出这么多,这个题没有读懂,好好编辑一下。或者看一下例题。这类型的题目很简单
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询