如图所示,在△ABC中,∠A=70°,BD平分∠CBE,CD平分∠BCF,BD与CD相交于点D,求∠D的度数
3个回答
展开全部
∠ABC=180°-2∠CBD
∠ABC=180°-∠ACB-∠A
2∠CBD=∠ACB+∠A=∠ACB+70°
∠CBD=∠ACB/2 +5°
∠ACB=180°-2∠BCD
∠ACB=180°-∠ABC-∠A
2∠BCD=∠ABC+∠A=∠ABC+70°
∠BCD=∠ABC/2+35°
∠D=180°-∠CBD-∠BCD
=180°-(∠ACB/2+35°)-(∠ABC/2+35°)
=180°-70°-∠ACB/2-∠ABC/2
=110°-(∠ACB+∠ABC)/2
∠ABC+∠ACB=180°-∠A=110°
∠D =110°-110°/2
=110°-55°
=55°
∠ABC=180°-∠ACB-∠A
2∠CBD=∠ACB+∠A=∠ACB+70°
∠CBD=∠ACB/2 +5°
∠ACB=180°-2∠BCD
∠ACB=180°-∠ABC-∠A
2∠BCD=∠ABC+∠A=∠ABC+70°
∠BCD=∠ABC/2+35°
∠D=180°-∠CBD-∠BCD
=180°-(∠ACB/2+35°)-(∠ABC/2+35°)
=180°-70°-∠ACB/2-∠ABC/2
=110°-(∠ACB+∠ABC)/2
∠ABC+∠ACB=180°-∠A=110°
∠D =110°-110°/2
=110°-55°
=55°
2011-06-12
展开全部
怎么没看见图形啊?
解:因∠A=70°,所以∠B+∠C=110°;
因BD平分∠CBE,CD平分∠BCF,
所以∠DBC+∠DCB=110°\2=55°;
所以在△BCD中,∠D=180°--55°=125°
解:因∠A=70°,所以∠B+∠C=110°;
因BD平分∠CBE,CD平分∠BCF,
所以∠DBC+∠DCB=110°\2=55°;
所以在△BCD中,∠D=180°--55°=125°
追问
所以∠DBC+∠DCB=110°\2=55°;
说一下原因行吗
追答
额,看见图形了,和我画的不一样。若是那样,就是∠D=55°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询