微积分的定义
展开全部
微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分的基本介绍
微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微分学和积分学
微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
极限
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,於是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在Δ的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能。这个概念是成功的。
微积分的基本介绍
微积分学基本定理指出,求不定积分与求导函数互为逆运算[把上下限代入不定积分即得到积分值,而微分则是导数值与自变量增量的乘积],这也是两种理论被统一成微积分学的原因。我们可以以两者中任意一者为起点来讨论微积分学,但是在教学中,微分学一般会先被引入。
微分学和积分学
微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
极限
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。所以为了要利用代数处理代表无限的量,於是精心构造了“极限”的概念。在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,而引入了一个过程任意小量。就是说,除数不是零,所以有意义,同时,这个过程小量可以取任意小,只要满足在Δ的区间内,都小于该任意小量,我们就说他的极限为该数——你可以认为这是投机取巧,但是,他的实用性证明,这样的定义还算比较完善,给出了正确推论的可能。这个概念是成功的。
参考资料: http://baike.baidu.com/view/3139.htm
展开全部
微积分首先是要明白导数的概念,然后理解微分的概念,最后是积分的概念,微分和积分结合一起就叫微积分;你一点都没有接触过,根本没法说,初等数学例如求正方形面积,就是长乘宽,高等数学就会把长微分,即用切割成非常微小的线段,记为dl(d是微分的意思,l是那段很微小线段的长),设宽为a,那么a乘以dl就是被细窃的那部分面积,然后再累加所有被细窃的面积,就等于总面积了,这就叫微积分最简单的过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个参照书上了,太难打了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询