如图,在梯形ABCD中,AB平行CD,且AB+CD=BC,M是AD的中点,求证:BM⊥CM.

如题... 如题 展开
飘渺的绿梦
2011-06-13 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1770万
展开全部
方法一:
过M作MN∥AB交CD于N。
很明显,MN是梯形ABCD的中位线,∴MN=(AB+CD)/2。
而AB+CD=BC,∴BN=MN=CN。
可见过B、C、M的圆是以点N为圆心的,即BC是△BCM外接圆的直径,得:BM⊥CM。

方法二:
由方法一得到BN=MN=CN后,可得:∠BMN=∠MBN,∠CMN=∠MCN,结合三角形内角和定理,有:∠BMN+∠MBN+∠CMN+∠MCN=180°,∴2(∠BMN+∠CMN)=180°,
即:∠BMC=90°,∴BM⊥CM。
孟珧Q5
高粉答主

2011-06-13 · 每个回答都超有意思的
知道顶级答主
回答量:4.3万
采纳率:70%
帮助的人:2.4亿
展开全部
过M作MN∥DC于点N,
因为M是AD的中点,MN为提梯形中位线,BN=CN ,MN=1/2(AB+CD)=1/2BC
所以MN=BN=CN
则:∠MBC=∠BMN=∠ABM ∠NMC=∠BCM=∠MCD
又因为:∠ABC+∠BCD=180°
所以:∠BMN+∠MCB=90°
所以:BM⊥CM.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
静秋闹夏
2011-06-13
知道答主
回答量:7
采纳率:0%
帮助的人:0
展开全部
取BC中点M
连接MN
由梯形性质,MN=1/2BC=BN=CN
由MN=BN得出角NBM=角BMN
同理得出角NMC=角NBM
上四个角之和为180度
角NBM+角NBM=角BMN+角NMC=90度
得证BM⊥CM.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
正华刘
2011-06-13 · TA获得超过188个赞
知道答主
回答量:71
采纳率:0%
帮助的人:59.1万
展开全部
取BC中点N连接MN,易得MN=1/2(AB+CD)=1/2BC又N是BC中点,故MN=BN=NC,所以BM⊥MC(三角形一边上中线是这边的一半,此三角形是以该边为斜边的直角三角形)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式