大家有没有关于利用泰勒中值定理的不等式证明题啊

陈jin
2011-06-14 · TA获得超过6006个赞
知道大有可为答主
回答量:3337
采纳率:75%
帮助的人:1196万
展开全部
f(x)二阶可导,且f(0)=0,f(1)=1,f'(0)=f'(1)=0,证明应该是存在x属于(0,1),使得|f''(x)|>=2。
证明:由Taylor展开可知:f(1/2)=f(0)+f'(0)*(1/2 -0)+f"(p)*(1/2 -0)^2
(p属于(0,1/2))
f(1/2)=f(1)+f'(1)*(1/2 -1)+f"(q)*(1/2 -1)^2
(q属于(1/2,1))
两个相减,带入条件,我们得到:f"(p)-f"(q)=4
又因为|f"(p)-f"(q)|<=|f"(p)|+|f"(q)|
所以由鸽笼原理,|f"(p)|、|f"(q)|中较大者大于等于2
匿名用户
2011-06-27
展开全部
我没有,LS的例子不错
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式