大家有没有关于利用泰勒中值定理的不等式证明题啊
2个回答
展开全部
f(x)二阶可导,且f(0)=0,f(1)=1,f'(0)=f'(1)=0,证明应该是存在x属于(0,1),使得|f''(x)|>=2。
证明:由Taylor展开可知:f(1/2)=f(0)+f'(0)*(1/2 -0)+f"(p)*(1/2 -0)^2
(p属于(0,1/2))
f(1/2)=f(1)+f'(1)*(1/2 -1)+f"(q)*(1/2 -1)^2
(q属于(1/2,1))
两个相减,带入条件,我们得到:f"(p)-f"(q)=4
又因为|f"(p)-f"(q)|<=|f"(p)|+|f"(q)|
所以由鸽笼原理,|f"(p)|、|f"(q)|中较大者大于等于2
证明:由Taylor展开可知:f(1/2)=f(0)+f'(0)*(1/2 -0)+f"(p)*(1/2 -0)^2
(p属于(0,1/2))
f(1/2)=f(1)+f'(1)*(1/2 -1)+f"(q)*(1/2 -1)^2
(q属于(1/2,1))
两个相减,带入条件,我们得到:f"(p)-f"(q)=4
又因为|f"(p)-f"(q)|<=|f"(p)|+|f"(q)|
所以由鸽笼原理,|f"(p)|、|f"(q)|中较大者大于等于2
2011-06-27
展开全部
我没有,LS的例子不错
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询