
为什么对曲面而言,求各变量在某一点的偏导数,即为这一点的法向量 15
3个回答
展开全部
1)首先从简单开始,如果是平面F(x,y)=0
一般形式是Ax+By+C=0
法向量是(A,B)。因为任意一点(x0,y0)在平面上,A*x0+B*y0+C=0
那么A*(x-x0)+B*(y-y0)=0,即向量(A,B)*(x-x0,y-y0)=0
2)对于一般曲面 F(x,y,z,……)=0
两边微分(偏导用大写D),有dF=DF/DX*dx + DF/DY*dy + DF/DZ*dz + ……= d0 = 0
那么向量(DF/DX , DF/DY , DF/DZ , ……) * (dx , dy , dz, ……)=0
其中向量(dx , dy , dz, ……)必定在平面上(d是微分嘛,曲面的微小变化量)
所以向量(DF/DX , DF/DY , DF/DZ , ……) 是曲面的法向量 回答者: eraqi
这就是很好的答案啊
一般形式是Ax+By+C=0
法向量是(A,B)。因为任意一点(x0,y0)在平面上,A*x0+B*y0+C=0
那么A*(x-x0)+B*(y-y0)=0,即向量(A,B)*(x-x0,y-y0)=0
2)对于一般曲面 F(x,y,z,……)=0
两边微分(偏导用大写D),有dF=DF/DX*dx + DF/DY*dy + DF/DZ*dz + ……= d0 = 0
那么向量(DF/DX , DF/DY , DF/DZ , ……) * (dx , dy , dz, ……)=0
其中向量(dx , dy , dz, ……)必定在平面上(d是微分嘛,曲面的微小变化量)
所以向量(DF/DX , DF/DY , DF/DZ , ……) 是曲面的法向量 回答者: eraqi
这就是很好的答案啊

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1)首先从简单开始,如果是平面F(x,y)=0
一般形式是Ax+By+C=0
法向量是(A,B)。因为任意一点(x0,y0)在平面上,A*x0+B*y0+C=0
那么A*(x-x0)+B*(y-y0)=0,即向量(A,B)*(x-x0,y-y0)=0
2)对于一般曲面 F(x,y,z,……)=0
两边微分(偏导用大写D),有dF=DF/DX*dx + DF/DY*dy + DF/DZ*dz + ……= d0 = 0
那么向量(DF/DX , DF/DY , DF/DZ , ……) * (dx , dy , dz, ……)=0
其中向量(dx , dy , dz, ……)必定在平面上(d是微分嘛,曲面的微小变化量)
所以向量(DF/DX , DF/DY , DF/DZ , ……) 是曲面的法向量
一般形式是Ax+By+C=0
法向量是(A,B)。因为任意一点(x0,y0)在平面上,A*x0+B*y0+C=0
那么A*(x-x0)+B*(y-y0)=0,即向量(A,B)*(x-x0,y-y0)=0
2)对于一般曲面 F(x,y,z,……)=0
两边微分(偏导用大写D),有dF=DF/DX*dx + DF/DY*dy + DF/DZ*dz + ……= d0 = 0
那么向量(DF/DX , DF/DY , DF/DZ , ……) * (dx , dy , dz, ……)=0
其中向量(dx , dy , dz, ……)必定在平面上(d是微分嘛,曲面的微小变化量)
所以向量(DF/DX , DF/DY , DF/DZ , ……) 是曲面的法向量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼上错了吧,平面的一般方程怎么会是Ax加By加C等于零呢?不过方法没错哦。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询