设三阶矩阵A的特征值为-1,1,2,求|A*|以及|A^2-2A+E|

Dilraba学长
高粉答主

2019-05-07 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411048

向TA提问 私信TA
展开全部

答案为2、4、0。

解题过程如下:

1. A的行列式等于A的全部特征值之积

所以 |A| = -1*1*2 = -2

2. 若a是可逆矩阵A的特征值, 则 |A|/a 是A*的特征值

所以A*的特征值为 2,-2,-1

所以|A*| = 2*(-2)*(-1) = 4.

注: 当然也可用伴随矩阵的行列式性质 |A*| = |A|^(n-1) = |A|^2 = (-2)^2 = 4.

3. 若a是可逆矩阵A的特征值, 则对多项式g(x), g(a)是g(A)的特征值

这里 g(x) = x^2-2x+1, g(A)=A^2-2A+E

所以 g(A)=A^2-2A+E 的特征值为 g(-1),g(1),g(2), 即 4,0,1

所以 |A^2-2A+E| = 4*0*1 = 0

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量。

扩展资料

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组:

的一个基础解系,则的属于特征值的全部特征向量是

(其中是不全为零的任意实数).

[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等。

颜代7W
高粉答主

2019-06-20 · 每个回答都超有意思的
知道小有建树答主
回答量:505
采纳率:100%
帮助的人:12.8万
展开全部

|A*|等于4。|A^2-2A+E|等于0。

解:因为矩阵A的特征值为λ1=-1,λ2=1,λ3=2,那么|A|=λ1*λ2*λ3=-1*1*2=-2。

又根据|A*| =|A|^(n-1),可求得 |A*|= |A|^2 = (-2)^2 = 4。

同时根据矩阵特征值性质可求得A^2-2A+E的特征值为η1、η2、η3。

则η1=(λ1)^2-2λ1+1=4,η1=(λ2)^2-2λ2+1=0,η3=(λ3)^2-2λ3+1=1,

则|A^2-2A+E|=η1*η2*η3=4*0*1=0

即|A*|等于4。|A^2-2A+E|等于0。

扩展资料:

矩阵特征值性质

1、n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则|A=|=λ1*λ2*…*λn。

2、若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

3、若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

4、设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

参考资料来源:百度百科-矩阵特征值

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lry31383
高粉答主

推荐于2017-11-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
此题考查特征值的性质
用常用性质解此题:

1. A的行列式等于A的全部特征值之积
所以 |A| = -1*1*2 = -2

2. 若a是可逆矩阵A的特征值, 则 |A|/a 是A*的特征值
所以A*的特征值为 2,-2,-1
所以|A*| = 2*(-2)*(-1) = 4.
注: 当然也可用伴随矩阵的行列式性质 |A*| = |A|^(n-1) = |A|^2 = (-2)^2 = 4.

3. 若a是可逆矩阵A的特征值, 则对多项式g(x), g(a)是g(A)的特征值
这里 g(x) = x^2-2x+1, g(A)=A^2-2A+E
所以 g(A)=A^2-2A+E 的特征值为 g(-1),g(1),g(2), 即 4,0,1
所以 |A^2-2A+E| = 4*0*1 = 0
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
大钢蹦蹦
2011-06-16 · TA获得超过3.2万个赞
知道大有可为答主
回答量:5493
采纳率:65%
帮助的人:1556万
展开全部
(A*)A=|A|E
同取行列式
|(A*)A|=||A|E|
|(A*)|*|A|=||A|E|=|A|^3
|A*|=|A|^2=(-1*1*2)^2=4
|A^2-2A+E|=|(A-E)^2|=|A-E|^2
A-E的特征值是:-2,0,1
所以|A-E|=0
|A^2-2A+E|=0
追问
请问 |(A*)|*|A|=||A|E|=|A|^3
和 A-E的特征值是:-2,0,1
所以|A-E|=0
这两步能讲详细些吗?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式