什么是通分?
通分根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。
通分的关键是确定几个分式的最简公分母,其步骤如下:
1.分别列出各分母的约数;
2.将各分母约数相乘,若有公约数只乘一次,所得结果即为各分母最小公倍数;
3.凡出现的字母或含有字母的因式为底的幂的因式都要取;
4.相同字母或含字母的因式的幂的因式取指数最大的;
5.将上述取得的式子都乘起来,就得到了最简公分母。
扩展资料
示例
根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。 把异分母分数分别化成与原来分数相等的同分母分数,叫做通分。 把甲数与乙数的比和乙数与丙数的两个不同的比化成甲与乙与丙的比,也称作通分。 例如:
比较:7/9和8/11的大小
解:7/9 = 7×11/9×11 = 77/99
8/11 = 8×9/11×9 = 72/99
∵ 77/99 > 72/99
∴ 7/9 > 8/11
甲:乙=2:5=8:20 乙:丙=4:7=20:35 甲:乙:丙=8:20:35
意义:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。 最简分数:分子、分母是互质数的分数,叫做最简分数。
基本定义一:
根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。
基本定义二:
把甲数与乙数之比、乙数与丙数之比,这两个不同的比,化成甲与乙与丙之比,也叫做通分。
通分方法
1. 求出原来几个分数的分母的最小公倍数
2. 根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数
通分举例
①通分 1/3 和 1/4
解:3和4的最小公倍数为12
1/3 = 4/12
1/4 = 3/12
则通分结果为 4/12 和 3/12
.
②比较 7/9 和 8/11 的大小
解:7/9 = 7×11 / 9×11 = 77/99
8/11 = 8×9 / 11×9 = 72/99
∵ 77/99 > 72/99
∴ 7/9 > 8/11
.
③
甲:乙=2:5=8:20
乙:丙=4:7=20:35
甲:乙:丙=8:20:35
参考资料: http://baike.baidu.com/view/793512.html?wtp=tt
把异分母分数分别化成与原来分数相等的同分母分数,叫做通分。
把甲数与乙数的比和乙数与丙数的两个不同的比化成甲与乙与丙的比,也称作通分。