已知函数f(x)=2cosx\2(根号下3cosx\2-sinx\2).(1)设θ∈[-π\2,π\2],且f(θ)=根号3+1,求θ的值
(2)在△ABC中,AB=1,f(C)=根号3+1.且△ABC的面积为(根号3)\2,求sinA+sinB的值...
(2)在△ABC中,AB=1,f(C)=根号3+1.且△ABC的面积为(根号3)\2,求sinA+sinB的值
展开
2个回答
展开全部
f(x)=2cosx/2 (√3cosx/2-sinx/2)
=2√3cos²(x/2)-2 sinx/2 cosx/2
=√3(1+cosx)-sinx
=√3 cosx-sinx+√3
=2 cos(x+π/6) +√3
(1)f(θ)=√3+1,则cos(θ+π/6)=1/2,
因为θ∈[-π/2,π/2],
所以θ+π/6=π/3或-π/3
θ=π/6或-π/2.
(2)
2kπ≤x+π/6≤2kπ+π,k∈Z.
2kπ-π/6≤x≤2kπ+5π/6,
函数的递减区间是[2kπ-π/6, 2kπ+5π/6] ,k∈Z.
2kπ-π≤x+π/6≤2kπ,k∈Z.
2kπ-7π/6≤x≤2kπ-π/6,
函数的递增区间是[2kπ-7π/6, 2kπ-π/6] ,k∈Z.
=2√3cos²(x/2)-2 sinx/2 cosx/2
=√3(1+cosx)-sinx
=√3 cosx-sinx+√3
=2 cos(x+π/6) +√3
(1)f(θ)=√3+1,则cos(θ+π/6)=1/2,
因为θ∈[-π/2,π/2],
所以θ+π/6=π/3或-π/3
θ=π/6或-π/2.
(2)
2kπ≤x+π/6≤2kπ+π,k∈Z.
2kπ-π/6≤x≤2kπ+5π/6,
函数的递减区间是[2kπ-π/6, 2kπ+5π/6] ,k∈Z.
2kπ-π≤x+π/6≤2kπ,k∈Z.
2kπ-7π/6≤x≤2kπ-π/6,
函数的递增区间是[2kπ-7π/6, 2kπ-π/6] ,k∈Z.
参考资料: http://zhidao.baidu.com/question/393235856.html?seed=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询