如图,△ABC中,D是BC边的中点,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F。证明:∠B=∠C 10
展开全部
因为D既是BC中点,又是∠BAC的角平分线,所以△ABC必为等腰三角形,所以∠B=∠C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为D既是BC中点,又是∠BAC的角平分线,所以△ABC必为等腰三角形,所以∠B=∠C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
因为AD平分bac,BD=DC,
所以三角形ABC为等腰三角形
所以角B=角C
因为AD平分bac,BD=DC,
所以三角形ABC为等腰三角形
所以角B=角C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
△AED≌△AFD(AAS)
DE=DF
△BDE≌△CDF(HL)
∠B=∠C
DE=DF
△BDE≌△CDF(HL)
∠B=∠C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
△EBD≌△FDC
AB∥AC
AD⊥BC
∠ABD=∠ACD
∠B=∠C
AB∥AC
AD⊥BC
∠ABD=∠ACD
∠B=∠C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询