幂级数求和中,逐项求导或逐项积分到底该如何操作??
如:∑(n从1到正无穷)(-1)^(n-1)*(2x)^(2n-1)/(2n-1)∑(n从1到正无穷)n*(n+2)X^2n...
如:∑(n从1到正无穷)(-1)^(n-1) * (2x)^(2n-1) / (2n-1)
∑(n从1到正无穷)n *(n+2)X^2n 展开
∑(n从1到正无穷)n *(n+2)X^2n 展开
展开全部
①∑(n从1到正无穷)(-1)^(n-1) * (2x)^(2n-1) / (2n-1)
=∑(n从1到正无穷)(-1)^(n-1) ∫(2x)^(2n-2) dx(积分区间为0到x,下同)
=∑(n从1到正无穷)(-1)^(n-1)∫(4x²)^(n-1)dx
=∑(n从1到正无穷)∫(-4x²)^(n-1)dx
=∫[∑(n从1到正无穷)(-4x²)^(n-1)]dx
=∫[1/(1+4x²)]dx
=arctan2x
②∑(n从1到正无穷)n *(n+2)X^2n
=1/2∑(n从1到正无穷)2n(n+2)x^2n
=(1/2)x∑(n从1到正无穷)(n+2)2nx^(2n-1)
=(1/2)x∑(n从1到正无穷)(n+2)[x^(2n)]′
=(1/2)x[∑(n从1到正无穷)(n+2)x^(2n)]′
∑(n从1到正无穷)(n+2)x^(2n)
=1/(2x³)∑(n从1到正无穷)(2n+4)x^(2n+3)
=1/(2x³)∑(n从1到正无穷)[x^(2n+4)]′
=1/(2x³)[∑(n从1到正无穷)x^(2n+4)]′
=1/(2x³)[x^6/(1-x²)]′
=x²(3-2x²)/(1-x²)²
原式=(1/2)x[∑(n从1到正无穷)(n+2)x^(2n)]′
=(1/2)x[x²(3-2x²)/(1-x²)²]′
=x²(3-x²) /(1-x)³
=∑(n从1到正无穷)(-1)^(n-1) ∫(2x)^(2n-2) dx(积分区间为0到x,下同)
=∑(n从1到正无穷)(-1)^(n-1)∫(4x²)^(n-1)dx
=∑(n从1到正无穷)∫(-4x²)^(n-1)dx
=∫[∑(n从1到正无穷)(-4x²)^(n-1)]dx
=∫[1/(1+4x²)]dx
=arctan2x
②∑(n从1到正无穷)n *(n+2)X^2n
=1/2∑(n从1到正无穷)2n(n+2)x^2n
=(1/2)x∑(n从1到正无穷)(n+2)2nx^(2n-1)
=(1/2)x∑(n从1到正无穷)(n+2)[x^(2n)]′
=(1/2)x[∑(n从1到正无穷)(n+2)x^(2n)]′
∑(n从1到正无穷)(n+2)x^(2n)
=1/(2x³)∑(n从1到正无穷)(2n+4)x^(2n+3)
=1/(2x³)∑(n从1到正无穷)[x^(2n+4)]′
=1/(2x³)[∑(n从1到正无穷)x^(2n+4)]′
=1/(2x³)[x^6/(1-x²)]′
=x²(3-2x²)/(1-x²)²
原式=(1/2)x[∑(n从1到正无穷)(n+2)x^(2n)]′
=(1/2)x[x²(3-2x²)/(1-x²)²]′
=x²(3-x²) /(1-x)³
追问
高数真让人头疼,小弟还是有些许不明白:第一题中 ∫[∑(n从1到正无穷)(-4x²)^(n-1)]dx
=∫[1/(1+4x²)]dx 这步是如何得到的呀?
追答
你知道∑(n从0到无穷)x^n=1/(1-x)吗?
这里也是一样的,∑(n从1到正无穷)(-4x²)^(n-1)的收敛区间为(-1/2,1/2],在收敛区域内
Sn=[1-(-4x²)^n]/(1+4x²)
lim(n→∞)Sn=1/(1+4x²)
即该级数∑(n从1到正无穷)(-4x²)^(n-1)=1/(1+4x²)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |