高中数学,在线等,关于不等式恒成立的问题。
已知当x>0时,不等式x²-ma+4>0恒成立,则实数m的取值范围是要过程是x^2-mx+4>0吧...
已知当x>0时,不等式x²-ma+4>0恒成立,则实数m的取值范围是
要过程
是x^2-mx+4>0吧 展开
要过程
是x^2-mx+4>0吧 展开
展开全部
x^2-mx+4>0 推出 mx<x^2+4 推出 m<(x^2+4)/x 推出 m<x+4/x
第一种方法。设Y=x+4/x 如果你懂勾函数,你就会知道,函数Y在X>0时,在(0,2)单调递减,在(2,正无穷)单调递增。所以Y在x=2取最小值=4。 所以m<4
第二种方法。 如果你不懂勾函数,则用求导。 Y导=1-4/(x^2) 当x=2时 Y导等于0 取极小值,即最小值。然后同上。
第三种方法。如果求导还不会。那只能用笨办法了。 用对称轴。 因为a=1 所以函数开口向上。
1. 设对称轴x<0 则 对称轴x=m/2<0 即m<0 。则x=0时,4>0。成立。所以m<0
2. 设对称轴x=0 则 对称轴x=m=0 一样成立。所以m=0
3. 设对称轴x>0 则 对称轴x=m/2>0 △=b^2-4ac<0 得m^2-16<0 可得 0<m<4
综上,m<4
第一种方法。设Y=x+4/x 如果你懂勾函数,你就会知道,函数Y在X>0时,在(0,2)单调递减,在(2,正无穷)单调递增。所以Y在x=2取最小值=4。 所以m<4
第二种方法。 如果你不懂勾函数,则用求导。 Y导=1-4/(x^2) 当x=2时 Y导等于0 取极小值,即最小值。然后同上。
第三种方法。如果求导还不会。那只能用笨办法了。 用对称轴。 因为a=1 所以函数开口向上。
1. 设对称轴x<0 则 对称轴x=m/2<0 即m<0 。则x=0时,4>0。成立。所以m<0
2. 设对称轴x=0 则 对称轴x=m=0 一样成立。所以m=0
3. 设对称轴x>0 则 对称轴x=m/2>0 △=b^2-4ac<0 得m^2-16<0 可得 0<m<4
综上,m<4
展开全部
x^2>ma-4 恒成立 , x>0
而 x^2 > 0, x>0
故只需 ma-4<=0, 即 ma <= 4
如果 a=0, 则 m 可取任意值, 如果 a>0 , 则 m <= 4/a, 如果 a<0, 则 m >= 4/a.
而 x^2 > 0, x>0
故只需 ma-4<=0, 即 ma <= 4
如果 a=0, 则 m 可取任意值, 如果 a>0 , 则 m <= 4/a, 如果 a<0, 则 m >= 4/a.
追问
都没有a
追答
令 y=x-m/2, 则 x^2-mx+4=x(x-m)+4=(y+m/2)(y-m/2)+4=y^2+(4-m^2/4)
故原问题等价于 y^2+(4-m^2/4) > 0 , y > -m/2
再分 m > 0 和 m 0 时, 左边的下确界为 4-m^2/4, 但取不到, 因此 4>=m^2/4, 0<m<=4. 总之 m<=4.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由x^2-mx+4>0得mx<x^2+4,
因为x>0,所以m<(x^2+4)/x=x+4/x
即要让m小于x+4/x的最小值,
x+4/x≥2√x*4/x=2*2=4,
即m的取值范围是(-∞,4)
这是在考察均值不等式
因为x>0,所以m<(x^2+4)/x=x+4/x
即要让m小于x+4/x的最小值,
x+4/x≥2√x*4/x=2*2=4,
即m的取值范围是(-∞,4)
这是在考察均值不等式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
……
f'(x)=3x^2-6ax-9a^2=3(x^2-2ax-3a^2)=3[(x-a)^2-4a^2]
所以限定端点和极点。
|f'(a)|=12a^2<=12a……a<1
|f'(4a)|=15a^2<=12a……a<4/5
|f'(1)|=|3(1-2a-3a^2|=3|3a^2+2a-1|<=12a
|3a^2+2a-1|<=4a
3a^2+2a-1<=4a——3a^2-2a-1<=0,(3a+1)(a-1)<=0……-1/3<a<1
3a^2+2a-1>=-4a——3a^2+6a-1<=0,a1、a2=1±2√3/3
所以最终范围为1/4<a<4/5
f'(x)=3x^2-6ax-9a^2=3(x^2-2ax-3a^2)=3[(x-a)^2-4a^2]
所以限定端点和极点。
|f'(a)|=12a^2<=12a……a<1
|f'(4a)|=15a^2<=12a……a<4/5
|f'(1)|=|3(1-2a-3a^2|=3|3a^2+2a-1|<=12a
|3a^2+2a-1|<=4a
3a^2+2a-1<=4a——3a^2-2a-1<=0,(3a+1)(a-1)<=0……-1/3<a<1
3a^2+2a-1>=-4a——3a^2+6a-1<=0,a1、a2=1±2√3/3
所以最终范围为1/4<a<4/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分离参数
mx<x^2+4因为x>0
m<x+4/x
因为均值不等式
所以m<(x+4/x)min=4
所以解为m<4
mx<x^2+4因为x>0
m<x+4/x
因为均值不等式
所以m<(x+4/x)min=4
所以解为m<4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询