证一般项级数∑sin√(n^2+1)π条件收敛。

zssgdhr
2011-06-19 · TA获得超过5122个赞
知道大有可为答主
回答量:1100
采纳率:0%
帮助的人:571万
展开全部
∵sin√(n²+1)π
=[(-1)^n]sin[√(n²+1)π-nπ]
=[(-1)^n]sin[√(n²+1)-n]π
=[(-1)^n]sin{1/[√(n²+1)+n]}π
lim(n→∞)[sin{1/[√(n²+1)+n]}π]/(1/n)
=lim(n→∞)nπ/[√(n²+1)+n]
=π/2
∴∑sin{1/[√(n²+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n²+1)+n]}π发散
lim(n→∞)sin{1/[√(n²+1)+n]}π=0,且sin{1/[√[(n+1)²+1]+(n+1)]}π≤sin{1/[√(n²+1)+n]}π
莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n²+1)+n]}π收敛
∴原级数条件收敛
刚果131415
2011-06-19 · TA获得超过120个赞
知道答主
回答量:73
采纳率:0%
帮助的人:0
展开全部
sin√(n^2+1)π=(-1)^n sin(√(n^2+1)π+nπ)
再利用分子有理化可得:(-1)^n sin(π/[根号(n^2+1)+n])
利用 Dirichlet判别法可知级数收敛。
而它的绝对值级数可以等价为:sin(π/[根号(n^2+1)+n])~π/[根号(n^2+1)+n]~1/n即发散。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式