证一般项级数∑sin√(n^2+1)π条件收敛。
2个回答
展开全部
∵sin√(n²+1)π
=[(-1)^n]sin[√(n²+1)π-nπ]
=[(-1)^n]sin[√(n²+1)-n]π
=[(-1)^n]sin{1/[√(n²+1)+n]}π
lim(n→∞)[sin{1/[√(n²+1)+n]}π]/(1/n)
=lim(n→∞)nπ/[√(n²+1)+n]
=π/2
∴∑sin{1/[√(n²+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n²+1)+n]}π发散
lim(n→∞)sin{1/[√(n²+1)+n]}π=0,且sin{1/[√[(n+1)²+1]+(n+1)]}π≤sin{1/[√(n²+1)+n]}π
由莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n²+1)+n]}π收敛
∴原级数条件收敛
=[(-1)^n]sin[√(n²+1)π-nπ]
=[(-1)^n]sin[√(n²+1)-n]π
=[(-1)^n]sin{1/[√(n²+1)+n]}π
lim(n→∞)[sin{1/[√(n²+1)+n]}π]/(1/n)
=lim(n→∞)nπ/[√(n²+1)+n]
=π/2
∴∑sin{1/[√(n²+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n²+1)+n]}π发散
lim(n→∞)sin{1/[√(n²+1)+n]}π=0,且sin{1/[√[(n+1)²+1]+(n+1)]}π≤sin{1/[√(n²+1)+n]}π
由莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n²+1)+n]}π收敛
∴原级数条件收敛
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询