在三角形ABC中,角A,B,C的对边分别是a,b,c。已知sinC+cosC=1-sin0.5C. 若a^2+b^2=4(a+b)-8.求边c的值

池初夏侯03b
2011-06-19 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1630
采纳率:100%
帮助的人:891万
展开全部
解: ∵sinC=2sin0.5C ×cos0.5C, cosC=cos0.5C×cos0.5C-sin0.5C×sin0.5C
∴2sin0.5C ×cos0.5C+cos0.5C×cos0.5C-sin0.5C×sin0.5C+sin0.5C=1
∵∠C<180°
∴sin0.5C,cos0.5C>0, 设sin0.5C=x
则有:2x×(1-x^2)^(1/2)+1-2×x^2+x=1
解得:x=[7^(1/2)-1]/4
∴cosC=cos0.5C×cos0.5C-sin0.5C×sin0.5C=1-2sin0.5C×sin0.5C
=1-2×x^2=7^(1/2)/4

又∵a^2+b^2=4(a+b)-8 化简得到:(a-2)^2+(b-2)^2=0
∴a=b=2

根据余弦定理:c^2 = a^2 + b^2 - 2·a·b·cosC
=4+4-8×7^(1/2)/4
∴c=7^(1/2)-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式