2个回答
展开全部
由a(n+1)=2Sn-2^n
知an=2S(n-1)-2^(n-1)
相减得a(n+1)-an=2an-2^(n-1)
a(n+1)=3an-2^(n-1)=3an-(3-2)×2^(n-1)=3[an-2^(n-1)]+2^n
则a(n+1)-2^n=3[an-2^(n-1)]
即数列{an-2^(n-1)}是以a1-2º=a-1为首项,3为公比的等比数列,设其前n项和为Tn
Tn=(a-1)(1-3^n)/(1-3)=(a-1)(3^n-1)/2
Sn=a1+a2+…+an
=(a1-2º)+(a2-2¹)+…+[an-2^(n-1)]+2º+2¹+…+2^(n-1)
=Tn+(1-2^n)/(1-2)
=[(a-1)(3^n-1)/2]+2^n-1
bn=[(a-1)(3^n-1)/2]-1=[(a-1)3^n-a-1]/2
知an=2S(n-1)-2^(n-1)
相减得a(n+1)-an=2an-2^(n-1)
a(n+1)=3an-2^(n-1)=3an-(3-2)×2^(n-1)=3[an-2^(n-1)]+2^n
则a(n+1)-2^n=3[an-2^(n-1)]
即数列{an-2^(n-1)}是以a1-2º=a-1为首项,3为公比的等比数列,设其前n项和为Tn
Tn=(a-1)(1-3^n)/(1-3)=(a-1)(3^n-1)/2
Sn=a1+a2+…+an
=(a1-2º)+(a2-2¹)+…+[an-2^(n-1)]+2º+2¹+…+2^(n-1)
=Tn+(1-2^n)/(1-2)
=[(a-1)(3^n-1)/2]+2^n-1
bn=[(a-1)(3^n-1)/2]-1=[(a-1)3^n-a-1]/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询