已知:0<α<π2<β<π,cos(β-π4)=13,sin(α+β)=45.
1个回答
展开全部
(1) cos(β-π/4)=(√2/2)cosβ+(√2/2)sinβ=(√2/2)(sinβ+cosβ)
所以(√2/2)(sinβ+cosβ)=1/3
两边平方得(1/2)(sin²β+cos²β+2sinβcosβ)=1/9
即1+sin2β=2/9
所以sin2β=-7/9
(2)π/2<β<π 所以π/4<β-π/4<3π/4
因cos(β-π4)=1/3故sin(β-π4)=2√2/3
0<α<π/2 π/2<β<π 所以π/2<α+β<3π/2
因sin(α+β)=4/5 故cos(α+β)=-3/5
因此cos(α+π/4)=cos[(α+β)-(β-π/4)]=cos(α+β)cos(β-π/4)+sin(α+β)sin(β-π/4)
=(-3/5)(1/3)+(4/5)(2√2/3)=(8√2-3)/15
所以(√2/2)(sinβ+cosβ)=1/3
两边平方得(1/2)(sin²β+cos²β+2sinβcosβ)=1/9
即1+sin2β=2/9
所以sin2β=-7/9
(2)π/2<β<π 所以π/4<β-π/4<3π/4
因cos(β-π4)=1/3故sin(β-π4)=2√2/3
0<α<π/2 π/2<β<π 所以π/2<α+β<3π/2
因sin(α+β)=4/5 故cos(α+β)=-3/5
因此cos(α+π/4)=cos[(α+β)-(β-π/4)]=cos(α+β)cos(β-π/4)+sin(α+β)sin(β-π/4)
=(-3/5)(1/3)+(4/5)(2√2/3)=(8√2-3)/15
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询