高数题 设函数z=ln(1+x^2+y^2),则dz=多少? 求详细过程啊~
3个回答
展开全部
∂z/∂x=1/(1+x²+y²)*2x=2x/(1+x²+y²)
∂z/∂y=1/(1+x²+y²)*2y=2y/(1+x²+y²)
所以dz=[2x/(1+x²+y²)]dx+[2y/(1+x²+y²)]dy
∂z/∂y=1/(1+x²+y²)*2y=2y/(1+x²+y²)
所以dz=[2x/(1+x²+y²)]dx+[2y/(1+x²+y²)]dy
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
dz=dln(1+x^2+y^2)
=1/(1+x^2+y^2)d(1+x^2+y^2)
=1/(1+x^2+y^2)(dx^2+dy^2)
=1/(1+x^2+y^2)(2xdx+2ydy)
=2x/(1+x^2+y^2)(dx)+2y/(1+x^2+y^2)(dy)
=1/(1+x^2+y^2)d(1+x^2+y^2)
=1/(1+x^2+y^2)(dx^2+dy^2)
=1/(1+x^2+y^2)(2xdx+2ydy)
=2x/(1+x^2+y^2)(dx)+2y/(1+x^2+y^2)(dy)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∂z/∂x=2x/(1+x^2+y^2)
∂z/∂y=2y/(1+x^2+y^2)
dz=∂z/∂xdx+∂z/∂ydy
=2x/(1+x^2+y^2)dx+2y/(1+x^2+y^2)dy
∂z/∂y=2y/(1+x^2+y^2)
dz=∂z/∂xdx+∂z/∂ydy
=2x/(1+x^2+y^2)dx+2y/(1+x^2+y^2)dy
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询