将一根铁丝分别围成一个长方形、正方形和圆,哪个的图形的面积最大?
2个回答
展开全部
圆形
长方形的面积为:长×宽、周长为2×(长+宽);正方形的面积为:边长的平方、周长为4×变长;圆的面积为π×半径的平方、周长为2π×半径。
如此一来。现设周长为单位1,那么长方形的话,长+宽=1/2,如果长是1/3,那么宽则是1/6,面积为1/18,而正方形的话,变长为1/4,面积为1/16,其实更好的是初一还是初二时会学不等式,可以证明相同周长下,正方形的面积总会比长方形的面积大。
最后比较圆与正方形的面积,同样是利用单位1。圆的半径是1/(2π),那么面积是1/(4π),正方形的面积上面已算为1/16,因为知道4π小于16,作为分母,因此1/(4π)大于1/16。
所以,在周长都一样的情况下,圆的面积是最大的。证明的详细过程,用不等式更好。
我觉得这解法算是比较明白易懂,如果是小学奥数的话,应该一下能明白的。
长方形的面积为:长×宽、周长为2×(长+宽);正方形的面积为:边长的平方、周长为4×变长;圆的面积为π×半径的平方、周长为2π×半径。
如此一来。现设周长为单位1,那么长方形的话,长+宽=1/2,如果长是1/3,那么宽则是1/6,面积为1/18,而正方形的话,变长为1/4,面积为1/16,其实更好的是初一还是初二时会学不等式,可以证明相同周长下,正方形的面积总会比长方形的面积大。
最后比较圆与正方形的面积,同样是利用单位1。圆的半径是1/(2π),那么面积是1/(4π),正方形的面积上面已算为1/16,因为知道4π小于16,作为分母,因此1/(4π)大于1/16。
所以,在周长都一样的情况下,圆的面积是最大的。证明的详细过程,用不等式更好。
我觉得这解法算是比较明白易懂,如果是小学奥数的话,应该一下能明白的。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询