已知数列{an}的前n项和Sn=2an-1,数列{bn}中,bn=(3n-2)an 求数列{an}的通项公式及(bn)前n项和Tn

帐号已注销
2011-06-21 · TA获得超过475个赞
知道小有建树答主
回答量:150
采纳率:0%
帮助的人:113万
展开全部
解:
n≧2 (n∈N+)时:
an=Sn-S(n-1)
=2an-1-(2a(n-1)-1)
=2an-2a(n-1)
整理得,an=2a(n-1),即an/a(n-1)=2
a1=S1,S1=2a1-1,所以a1=1
所以数列{an}是以首项a1=1,公比为2的等比数列
所以an=2^(n-1) (n∈N+)
又bn=(3n-2)an
所以bn=(3n-2)2^(n-1)
Tn=b1+b2+…+bn
=1×1+4×2+7×4+…+(3n-2)2^(n-1)
2Tn=1×2+4×4+7×8+…+(3n-2)2^n
Tn-2Tn=1+3×2+3×4+…+3×2^(n-1)-(3n-2)2^n
=1+3×(2+4+…+2^(n-1))-(3n-2)2^n
=1+3×(2^n-2)-(3n-2)2^n=-Tn
整理,得:
Tn=(3n-5)2^n +5(n∈N+)
剑道天下
2011-06-21 · TA获得超过2078个赞
知道小有建树答主
回答量:931
采纳率:0%
帮助的人:524万
展开全部
n=1,S1=a1=2a1-1所以a1=1以此类推可得出以下结论:
a1=1,a2=2,a3=4,a4=8.........以此类推{an}=2的n-1次方
因为bn=(3n-2)an所以
b1=1*1,b2=4*2,b3=7*4,b4=10*8以此类推bn=(3n-2)*2的n-1次方
Tn=n/2[b1+bn] 代入即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式