初中几何旋转问题
(1)当α=45°时,如图2,若线段OA与边A1D1的交点为E。线段OA1与AB的交点为F。可得下列结论成立:1.△EOP全等△FOP 2. PA=PA1 。试选一个证明、
(2)当0°>α>90°时,第(1)小题中的结论PA=PA1还成立吗? 理由
(3)在旋转过程中,记正方形A1B1C1D1与AB边交于P,Q两点,探究∠POQ的度数是否改变?如果变化,请描述它与α之间的关系,如果不变,请直接写出∠POQ的度数
详细答案 谢谢 不要复制粘贴的 还有 解决此类旋转问题有什么规律 或者有什么好的思路谢谢 好的加分
高手帮忙 展开
分析:(1)①根据旋转的性质可得:∠AOA1=45°,即可证明∠PFO=90°,则OE=OF,即可根据HL公理证明两三角形全等;
②先证明△EOP≌△FOP,再证明∴△APO≌△A1PO,即可证得;
(2)作OE⊥A1D1,OF⊥AB,垂足分别为E,F,首先△EOP≌△FOP证得∠APO=∠A1PO,即可证明△APO≌△A1PO,从而结论得证;
(3)根据(1)(2)的解题过程中∠POQ的大小不变,即可确定.
解答:(1)若证明①△EOP≌△FOP
当α=45°时,即∠AOA1=45°,又∠PAO=45°
∴∠PFO=90°,同理∠PEO=90°
∴ EO=FO=AB/2
在Rt△EOP和Rt△FOP中,有 {OE=OF,OP=OP
∴△EOP≌△FOP
若证明②PA=PA1
法一证明:连接AA1,则∵O是两个正方形的中心,∴OA=OA1∠PA1O=∠PAO=45°
∴∠AA1O=∠A1AO
∴∠AA1O-∠PA1O=∠A1AO-∠PAO
即∠AA1P=∠A1AP∴PA=PA1
法二:证明,同①先证明△EOP≌△FOP
得∠EPO=∠FPO
∵∠APE=∠A1PF∴∠APE+∠EPO=∠A1PF+∠FPO即∠APO=∠A1PO(2分)
在△APO和△A1PO中有 {OP=OP,∠APO=∠A1PO,∠PAO=∠PA1O=45°
∴△APO≌△A1PO
∴PA=PA1
(2)成立
证明如下:法一证明:连接AA1,则∵O是两个正方形的中心,∴OA=OA1∠PA1O=∠PAO=45°
∴∠AA1O=∠A1AO
∴∠AA1O-∠PA1O=∠A1AO-∠PAO
即∠AA1P=∠A1AP∴PA=PA1
法二
如图,作OE⊥A1D1,OF⊥AB,垂足分别为E,F
则OE=OF,∠PFO=90°,∠PEO=90°
在Rt△EOP和Rt△FOP中,有 {OE=OF,OP=OP
∴△EOP≌△FOP∠EPO=∠FPO
∵∠APE=∠A1PF∴∠APE+∠EPO=∠A1PF+∠FPO即∠APO=∠A1PO
在△APO和△A1PO中有
{op=op,∠APO=∠A1PO,∠PAO=∠PA1O=45°
∴△APO≌△A1PO
∴PA=PA1
(3)在旋转过程中,∠POQ的度数不发生变化,∠POQ=45°
点评:本题主要考查了旋转的性质,三角形全等的证明,证明线段相等的问题常用的方法就是转化为证明三角形全等.
高人 你打字有点快吧 呵呵 第三问为什么不发生变化吗 呵呵
(1)(2)的解题过程中∠POQ的大小不变 通过证明三角形全等即可