什么是双曲线

举报
JayShow2010
2011-06-21 · TA获得超过733个赞
知道答主
回答量:159
采纳率:0%
帮助的人:119万
展开全部
双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。双曲线是圆锥曲线的一种,即圆锥面与平面的交截线。 双曲线在一定的仿射变换下,也可以看成反比例函数。
定义
  定义1:
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线。   定义2:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线。   定义3:一平面截一圆锥面,当截面与圆锥面的母线不平行,且与圆锥面的两个圆锥都相交时,交线称为双曲线。   定义4:在平面直角坐标系中,二元二次方程h(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。   1. a,b,c不都是0。   2. b^2 - 4ac > 0。   在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形。这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1。   上述的四个定义是等价的。
编辑本段重要概念和性质
  以下从纯几何的角度给出一些双曲线的相关概念和性质。   双曲线有两个分支。   在定义1中提到的两给定点称为该双曲线的焦点,定义2中提到的一给定点也是双曲线的焦点。双曲线有两个焦点。在定义2中提到的给定直线称为该双曲线的准线。在定义2中提到的到给定点与给定直线的距离之比,称为该双曲线的离心率。双曲线有两个焦点,两条准线。(注意:尽管定义2中只提到了一个焦点和一条准线。但是给定同侧的一个焦点,一条准线以及离心率可以根据定义2同时得到双曲线的两支,而两侧的焦点,准线和相同离心率得到的双曲线是相同的。)   双曲线与两焦点连线的交点,称为双曲线的顶点。   双曲线有两条渐近线。
编辑本段·双曲线的简单几何性质
  1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)。   2、对称性:关于坐标轴和原点对称。   3、顶点:A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且∣AA'│=2a.   B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.   4、渐近线:    焦点在x轴:y=±(b/a)x.   焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与X轴夹角   令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。θ=arccos(1/e)   令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e   令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e   这两个x是双曲线定点的横坐标。   求出他们的中点的横坐标(双曲线中心横坐标)   x=【(ep/1-e)+(-ep/1+e)】/2   (注意化简一下)   直线ρcosθ=【(ep/1-e)+(-ep/1+e)】/2   是双曲线一条对称轴,注意是不与曲线相交的对称轴。   将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’   则θ’=θ-【PI/2-arccos(1/e)】   则θ=θ’+【PI/2-arccos(1/e)】   带入上式:   ρcos{θ’+【PI/2-arccos(1/e)】}=【(ep/1-e)+(-ep/1+e)】/2   即:ρsin【arccos(1/e)-θ’】=【(ep/1-e)+(-ep/1+e)】/2   现在可以用θ取代式中的θ’了   得到方程:ρsin【arccos(1/e)-θ】=【(ep/1-e)+(-ep/1+e)】/2   现证明双曲线x^2/a^2-y^/b^2=1 上的点在渐近线中    设M(x,y)是双曲线在第一象限的点,则   y=(b/a)√(x^2-a^2) (x>a)   因为x^2-a^2<x^2,所以y=(b/a)√(x^2-a^2)<b/a√x^2=bx/a   即y<bx/a   所以,双曲线在第一象限内的点都在直线y=bx/a下方   根据对称性第二、三、四象限亦如此   5、离心率:   第一定义: e=c/a 且e∈(1,+∞).   第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e.   d点(│PF│)/d线(点P到定直线(相应准线)的距离)=e   6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离)   左焦半径:r=│ex+a│    右焦半径:r=│ex-a│   7、等轴双曲线   一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2   这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)   8、共轭双曲线   双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。   几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1   特点:(1)共渐近线   (2)焦距相等   (3)两双曲线的离心率平方后的倒数相加等于1   9、准线: 焦点在x轴上:x=±a^2/c   焦点在y轴上:y=±a^2/c   10、通径长:(圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)   d=2b^2/a    11、过焦点的弦长公式:   d=2pe/(1-e^2cos^2θ)   12、弦长公式:   d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:   由 直线的斜率公式:k = (y1 - y2) / (x1 - x2)   得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k   分别代入两点间的距离公式:|AB| = √[(x1 - x2)² + (y1 - y2)² ]   稍加整理即得:   |AB| = |x1 - x2|√(1 + k²) 或 |AB| = |y1 - y2|√(1 + 1/k²)
编辑本段·双曲线的标准公式与反比例函数
  X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)   而反比例函数的标准型是 xy = c (c ≠ 0)   但是反比例函数确实是双曲线函数经过旋转得到的   因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴   所以应该旋转45度   设旋转的角度为 a (a≠0,顺时针)   (a为双曲线渐进线的倾斜角)   则有   X = xcosa + ysina   Y = - xsina + ycosa   取 a = π/4   则   X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2   = (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2   = 4 (√2/2 x) (√2/2 y)   = 2xy.   而xy=c   所以   X^2/(2c) - Y^2/(2c) = 1 (c>0)   Y^2/(-2c) - X^2/(-2c) = 1 (c<0)   由此证得,反比例函数其实就是双曲线函数.只不过是双曲线在平面直角坐标系内的另一种摆放形式.
编辑本段·双曲线焦点三角形面积公式
  若∠F1PF2=θ,   则S△F1PF2=b^2;·cot(θ/2)   ·例:已知F1、F2为双曲线C:x^2;-y^;=1的左右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为多   少?   解:由双曲线焦点三角形面积公式得S△F1PF2=b^2;·cot(θ/2)=1×cot30°,   设P到x轴的距离为h,则S△F1PF2=½×F1F2×h=½2√2×h=√3, h=√6/2
zbxcathy
2011-06-21
知道答主
回答量:21
采纳率:0%
帮助的人:14.1万
展开全部
在平面坐标系中,符合等式y=k/x(k为常数)的点所形成的轨迹,是双曲线。
2 已赞过 已踩过<
你对这个回答的评价是?
评论(1) 举报 收起
秒懂百科
2021-01-19 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.3亿
展开全部

快捷键说明
  • : 播放 / 暂停
  • : 退出全屏
  • : 音量提高10%
  • : 音量降低10%
  • : 单次快进5秒
  • : 单次快退5秒
视频统计信息
Video url:
Video volume:
Video time:
Duration:
Dropped Frames:
Resolution:
x
[x]
按住此处可拖拽
不再出现
可在播放器设置中重新打开小窗播放
播放出现小问题,请 刷新 尝试
抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式