幂级数求和,求高人指导!: ∑(n从1到正无穷) n*(n+2)*x^n
1个回答
展开全部
∑(n从1到正无穷) n(n+2)x^n
=x∑(n从1到正无穷) n(n+2)x^(n-1)
=x∑(n从1到正无穷)[(n+2)x^n]′
=x[∑(n从1到正无穷)(n+2)x^n]′
∑(n从1到正无穷)(n+2)x^n
=1/x[∑(n从1到正无穷)(n+2)x^(n+1)]
=1/x∑(n从1到正无穷)[x^(n+2)]′
=1/x[∑(n从1到正无穷)x^(n+2)]′
=1/x[x³/(1-x)]′
=x(3-2x)/(1-x)²
原式=x[x(3-2x)/(1-x)²]′
=x(3-x)/(1-x)³
=x∑(n从1到正无穷) n(n+2)x^(n-1)
=x∑(n从1到正无穷)[(n+2)x^n]′
=x[∑(n从1到正无穷)(n+2)x^n]′
∑(n从1到正无穷)(n+2)x^n
=1/x[∑(n从1到正无穷)(n+2)x^(n+1)]
=1/x∑(n从1到正无穷)[x^(n+2)]′
=1/x[∑(n从1到正无穷)x^(n+2)]′
=1/x[x³/(1-x)]′
=x(3-2x)/(1-x)²
原式=x[x(3-2x)/(1-x)²]′
=x(3-x)/(1-x)³
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询