1.设X服从参数为λ的指数分布,X1,X2......Xn为取自总体X的样本,试求参数λ的矩估计和最大似然估计? 5
5个回答
展开全部
因为总体X服从泊松分布,所以E(X)=λ,即 u1=E(X)=λ
因此有 λ=1/n*(X1+X2+...+Xn)=X拔 (即X的平均数)
所以λ的矩估计量为 λ(上面一个尖号)=X拔
由最值原理,如果最值存在,此方程组求得的驻点即为所求的最值点,就可以很到参数的极大似然估计。极大似然估计法一般属于这种情况,所以可以直接按上述步骤求极大似然估计。
扩展资料:
如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。
指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。
矩有一阶矩、二阶矩、以后统称高阶矩,最常用的有一阶和二阶矩。一阶矩又叫静矩,是对函数与自变量的积xf(x)的积分(连续函数)或求和(离散函数)。力学中用以表示f(x)分布力到某点的合力矩,几何上可以用来计算重心。
参考资料来源:百度百科——指数分布
参考资料来源:百度百科——极大似然估计
2017-08-17
展开全部
因为总体X服从泊松分布,所以E(X)=λ,即 u1=E(X)=λ.
因此有 λ=1/n*(X1+X2+...+Xn)=X拔 (即X的平均数)
所以λ的矩估计量为 λ(上面一个尖号)=X拔.
因此有 λ=1/n*(X1+X2+...+Xn)=X拔 (即X的平均数)
所以λ的矩估计量为 λ(上面一个尖号)=X拔.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
asdfsdfafdasfdafdfafd
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询