利用浮点进行运算,称为浮点计算,这种运算通常伴随着因为无法精确表示而进行的近似或舍入。
在计算机科学中,浮点(英语:floating point,缩写为FP)是一种对于实数的近似值数值表现法,由一个有效数字(即尾数)加上幂数来表示,通常是乘以某个基数的整数次指数得到。以这种表示法表示的数值,称为浮点数(floating-point number)。
基本特征
当用不同的电脑计算圆周率时,会发现一台电脑的计算较另一台来讲结果更加精确。或者在进行枪战游戏的时候,当一粒子弹击中墙壁时,墙上剥落下一块墙皮,同样的场面在一台电脑上的表现可能会非常的呆板;
而在另外一台电脑上就会非常生动形象,甚至与我们在现实中看到的所差无几。这都是浮点运算能力的差异导致的。
如果是实数的话,就不是这样了,机器有两种办法表示实数,一种是定点,就是小数点位置是固定的,一种是浮点,就是小数点位置不固定,计算方法也比较麻烦,通常会比整数运算代价大很多。
扩展资料
浮点数,是属于有理数中某特定子集的数的数字表示,在计算机中用以近似表示任意某个实数。具体的说,这个实数由一个整数或定点数(即尾数)乘以某个基数(计算机中通常是2)的整数次幂得到,这种表示方法类似于基数为10的科学计数法。
例子
计算机里整数和小数形式就是按普通格式进行存储,例如1024、3.1415926等等,这个没什么特点,但是这样的数精度不高,表达也不够全面,为了能够有一种数的通用表示法,就发明了浮点数。
浮点数的表示形式有点像科学计数法(*.*****×10^***),它的表示形式是0.*****×10^***,在计算机中的形式为 .***** e ±***),其中前面的星号代表定点小数,也就是整数部分为0的纯小数,后面的指数部分是定点整数。
利用这样的形式就能表示出任意一个整数和小数,例如1024就能表示成0.1024×10^4,也就是 .1024e+004,3.1415926就能表示成0.31415926×10^1,也就是 .31415926e+001,这就是浮点数。浮点数进行的运算就是浮点运算。
参考资料来源:百度百科-浮点数 (有理数)
参考资料来源:百度百科-浮点运算
浮点数的表示形式有点像科学计数法(*.*****×10^***),它的表示形式是0.*****×10^***,在计算机中的形式为 .***** e ±***),其中前面的星号代表定点小数,也就是整数部分为0的纯小数,后面的指数部分是定点整数。
利用这样的形式就能表示出任意一个整数和小数,例如1024就能表示成0.1024×10^4,也就是 .1024e+004,3.1415926就能表示成0.31415926×10^1,也就是 .31415926e+001,这就是浮点数。
所以,通俗的来讲,浮点数进行的运算就是浮点运算。
扩展资料:
浮点加法减法运算
设有两个浮点数x和y,它们分别为
x = Mx*2^Ex
y = My*2^Ey
其中Ex和Ey分别为数x和y的阶码,Mx和My为数x和y的尾数。
两浮点数进行加法和减法的运算规则是
设 Ex小于等于Ey,则 x±y = (Mx*2^(Ex-Ey)±My)*2^Ey,
完成浮点加减运算的操作过程大体分为四步:
1、0 操作数的检查;
2、 比较阶码大小并完成对阶;
3、尾数进行加或减运算;
4、 结果规格化并进行舍入处理。
两浮点数进行加减,首先要看两数的阶码是否相同,即小数点位置是否对齐。若二数阶码相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若二数阶码不同,表示小数点位置没有对齐,此时必须使二数阶码相同,这个过程叫作对阶。
要对阶,首先应求出两数阶码Ex和Ey之差,即
△E = Ex-Ey
若△E=0,表示两数阶码相等,即Ex=Ey;若△E>0,表示Ex>Ey;若△E<0,表示Ex<Ey。
参考资料来源:百度百科-浮点数
参考资料来源:百度百科-浮点运算
浮点运算速度就是实数运算,因为计算机只能存储整数,所以实数都是约数,这样浮点运算是很慢的而且会有误差。
现在大多数机器都是32位的,也就是说32位都用来表示整数的话,那么对于无符号整数就是0 到 2^32-1,对于有符号的话就是-2^31 到 2^31-1。
扩展资料:
计算机里整数和小数形式就是按普通格式进行存储,例如1024、3.1415926等等,这个没什么特点,但是这样的数精度不高,表达也不够全面,为了能够有一种数的通用表示法,就发明了浮点数。
浮点数的表示形式有点像科学计数法(*.*****×10^***),它的表示形式是0.*****×10^***,在计算机中的形式为 .***** e ±***),其中前面的星号代表定点小数,也就是整数部分为0的纯小数,后面的指数部分是定点整数。
利用这样的形式就能表示出任意一个整数和小数。
例如1024就能表示成0.1024×10^4,也就是。
1024e+004,3.1415926就能表示成0.31415926×10^1,也就是 .31415926e+001,这就是浮点数。浮点数进行的运算就是浮点运算。
浮点运算比常规运算更复杂,因此计算机进行浮点运算速度要比进行常规运算慢得多。
参考资料来源:百度百科-浮点运算
浮点数的表示形式有点像科学计数法(*.*****×10^***),它的表示形式是0.*****×10^***,在计算机中的形式为 .***** e ±***),其中前面的星号代表定点小数,也就是整数部分为0的纯小数,后面的指数部分是定点整数。利用这样的形式就能表示出任意一个整数和小数,例如1024就能表示成0.1024×10^4,也就是 .1024e+004,3.1415926就能表示成0.31415926×10^1,也就是 .31415926e+001,这就是浮点数。浮点数进行的运算就是浮点运算。
浮点运算比常规运算更复杂,因此计算机进行浮点运算速度要比进行常规运算慢得多。