2/3
lim(n趋向于无穷大)(1+√2+√3+…+√n)/n√n
=lim(n趋向于无穷大)1/n*(√1/n+√2/n+√3/n+…+√n/n)=∫(0,1)√xdx=2/3*x^(3/2)|(0,1)=2/3
N的相应性
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
2/3
lim(n趋向于无穷大)(1+√2+√3+…+√n)/n√n
=lim(n趋向于无穷大)1/n*(√1/n+√2/n+√3/n+…+√n/n)=∫(0,1)√xdx=2/3*x^(3/2)|(0,1)=2/3
扩展资料
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
由琴生不等式得(根号1+根号2+……+根号n)小于n*根号((n+1)/2)
显然n*根号((n+1)/2)/n^3的极限为0
因为原式大于0,所以其极限也是0
注 琴生不等式:(若f(n)凹函数)nf((x1+x2+...+xn)/n)大于等于f(x1)+f(x2)+...f(xn) (若f(n)凸函数则不等号方向改变)
上题利用构造f(x)=根号x 再利用不等式得证
=lim(n趋向于无穷大)1/n*(√1/n+√2/n+√3/n+…+√n/n)=∫(0,1)√xdx=2/3*x^(3/2)|(0,1)=2/3