设n阶方阵A满足A²=2A。证明A的特征值只能是0或2

牛牛爱教育
高粉答主

2020-07-05 · 我是教育小达人,乐于助人; 专注于分享科
牛牛爱教育
采纳数:900 获赞数:105797

向TA提问 私信TA
展开全部

证明: 设a是A的特征值

则a^2-2a 是 A^2-2A 的特征值

因为 A^2-2A = 0

所以 a^2-2a = 0

所以 a(a-2) = 0

所以 a=0 或 a=2

即A的特征值只能是0或2。




扩展资料

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。

成书最早在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。

矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。

lry31383
高粉答主

2011-06-23 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: 设a是A的特征值
则a^2-2a 是 A^2-2A 的特征值
因为 A^2-2A = 0
所以 a^2-2a = 0
所以 a(a-2) = 0
所以 a=0 或 a=2.
即A的特征值只能是0或2.
来自:求助得到的回答
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式