若X1、X2、X3、为齐次线性方程AX=0的一个基础解系,为什么X1+X2,X2-X3,X1+X2+X3也是它的基础解系?

西域牛仔王4672747
2011-06-23 · 知道合伙人教育行家
西域牛仔王4672747
知道合伙人教育行家
采纳数:30591 获赞数:146328
毕业于河南师范大学计算数学专业,学士学位, 初、高中任教26年,发表论文8篇。

向TA提问 私信TA
展开全部
基础解系均是线性无关的。
令Y1=X1+X2,Y2=X2-X3,Y3=X1+X2+X3
则X1=2Y1-Y2-Y3,X2=Y2+Y3-Y1,X3=Y3-Y1
由X1、X2、X3线性无关,可知Y1、Y2、Y3也线性无关,故可作方程AX=0的一个基础解系。
lry31383
高粉答主

推荐于2016-12-02 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: (1) 因为齐次线性方程组的解的线性组合仍是解
所以 X1+X2,X2-X3,X1+X2+X3 都是AX=0的解.
(2) 设 k1(X1+X2)+k2(X2-X3)+k3(X1+X2+X3)=0
则 (k1+k3)X1+(k1+k2+k3)X2+(-k2+k3)X3=0.
因为X1,X2,X3为齐次线性方程AX=0的一个基础解系
所以 X1,X2,X3 线性无关.
所以有
k1+k3 = 0
k1+k2+k3 = 0
-k2+k3 = 0
又因为系数行列式 =
1 0 1
1 1 1
0 -1 1
= 1
所以 k1=k2=k3=0.
所以 X1+X2,X2-X3,X1+X2+X3 线性无关.
(3)因为AX=0的基础解系含3个向量
故X1+X2,X2-X3,X1+X2+X3也是AX=0的基础解系.
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式