24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2
24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,...
24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积
(2)在y轴上是否存在一点P,连接PA,PB,使=,
若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值. 展开
(1)求点C,D的坐标及四边形ABDC的面积
(2)在y轴上是否存在一点P,连接PA,PB,使=,
若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值. 展开
6个回答
展开全部
解:(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴=1.
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴①=1.
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴①=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=
1
2
×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴
∠DCP+∠BOP
∠CPO =1.
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=
1
2
×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴
∠DCP+∠BOP
∠CPO =1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)C(0,2) D(4,2)面积为:4*2=8
(2)不存在,可根据勾股定理等来说明。
(3)不明白题目的意思……
(2)不存在,可根据勾股定理等来说明。
(3)不明白题目的意思……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-04-11
展开全部
感觉提问者采纳中的第二问回答错了。。。。。好像是存在的,P为(0,4)或(0,-4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询