
2的2次方 + 2的3次方+2的4次方+......2的99次方 =多少??要过程
展开全部
设S=2^2+2^3+2^4+……+2^99
则2S=2×2^2+2×2^3+2×2^4+……+2×2^99
=2^3+2^4+2^5+……+2^100
∴2S-S=(2^3+2^4+2^5+……+2^100)-(2^2+2^3+2^4+……+2^99)
=2^3+2^4+2^5+……+2^100-2^2-2^3-2^4-……-2^99
=(2^3-2^3)+(2^4-2^4)+……+(2^99-2^99)+2^100-2^2
=2^100-2^2
即 S=2^100-2^2
则2S=2×2^2+2×2^3+2×2^4+……+2×2^99
=2^3+2^4+2^5+……+2^100
∴2S-S=(2^3+2^4+2^5+……+2^100)-(2^2+2^3+2^4+……+2^99)
=2^3+2^4+2^5+……+2^100-2^2-2^3-2^4-……-2^99
=(2^3-2^3)+(2^4-2^4)+……+(2^99-2^99)+2^100-2^2
=2^100-2^2
即 S=2^100-2^2
展开全部
(2的2次方 + 2的3次方+2的4次方+......2的99次方)乘以2,再错位相减减掉一个(2的2次方 + 2的3次方+2的4次方+......2的99次方),剩下的就是(2的2次方 + 2的3次方+2的4次方+......2的99次方)的答案了,也就是2的100次方-2的2次方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2的2次方 + 2的3次方+2的4次方+......2的99次方
这是一个等比数列
首项为4,公比为2,共有99-2+1=98个数
因此:和=4(1-2^98)/(1-2)
=2^100-4
这是一个等比数列
首项为4,公比为2,共有99-2+1=98个数
因此:和=4(1-2^98)/(1-2)
=2^100-4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是一个以2的2次方为首项,2为公比的等比数列,其和可直接用等比数列求和公式,即Sn=A1(1减q的N次方)/1减q A1是首项,q是公比,N是项数,此题N等于98 手机不好打这个公式,体谅下啊!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
等比数列,公比为2,首项为4,n=98
公式:首项(1-公比的n次方)/(1-公比)=4(1-2^98)/(1-2)=2^100-4
公式:首项(1-公比的n次方)/(1-公比)=4(1-2^98)/(1-2)=2^100-4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询