在矩形ABCD中,已知AB=2,BC=3,点E为AD边上一动点连结CE,作EF⊥CE交AB边于F。
1。当△ECF∽△AEF时,求AF的长2.在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请...
1。当△ECF∽△AEF时,求AF的长
2.在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请说明理由。 展开
2.在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请说明理由。 展开
6个回答
展开全部
(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=3/2,
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:3/2=3/2:2,
∴AF=9/8;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=3/2,
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:3/2=3/2:2,
∴AF=9/8;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一问:
三角形AEF相似DEC(这个一个没问题吧,略过)
所以三角形AEF,DEC,EFC,3个都相似。
所以∠AEF=∠ECF=∠ECD,∠AFE=∠EFC=∠CED
过E作FC的垂线交FC于M
三角形AEF全等MEF(略证)
三角形DEC全等CEM (略证)
所以AE=EM
ED=EM
所以AE=ED=4÷2=2
第二问:
不管G在AD边的何处,这两个三角形一直是相似的。
因为都是直角三角形,另外2个角都相等。
三角形AEF相似DEC(这个一个没问题吧,略过)
所以三角形AEF,DEC,EFC,3个都相似。
所以∠AEF=∠ECF=∠ECD,∠AFE=∠EFC=∠CED
过E作FC的垂线交FC于M
三角形AEF全等MEF(略证)
三角形DEC全等CEM (略证)
所以AE=EM
ED=EM
所以AE=ED=4÷2=2
第二问:
不管G在AD边的何处,这两个三角形一直是相似的。
因为都是直角三角形,另外2个角都相等。
追问
题目没看清吧
追答
哦,3÷2=1.5.哈哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-24
展开全部
1.∵△ECF∽△AEF ∴∠AFE= ∠EFC EF为∠AFC的角平分线 ∴∠AEF=∠ECF ∵△ECF和△AEF为直角△ 又∴∠AEF+90°+CED=180 ∴∠AEF+∠CED=90° 则△AEF∽△DCE ∴∠ECF=∠DCE , EC为∠FCD的角平分线, 过E点做EG⊥FC , 则AE=EG=ED=3/2 ∵AF/ED=AE/DC ∴AF=(3/2*3/2)/2=9/8.
2.∵EF⊥CE,∴无论点E在AD上的哪一点Rt△AEF∽Rt△DCE成立,因此不存在异于点E的点G。
2.∵EF⊥CE,∴无论点E在AD上的哪一点Rt△AEF∽Rt△DCE成立,因此不存在异于点E的点G。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分析:(1)由矩形的性质得∠A=∠D=90°,则∠AEF+∠AFE=90°,由EF⊥CE,则∠AFE=∠CED,得到∠AFE=∠CED,根据三角形相似的判定即可得到结论;
(2)由△AEF∽△DCE,根据相似的性质得到AF:ED=EF:CE,同理由△ECF∽△AEF得EF:AF=CE:AE,即AF:AE=EF:CE,则AE=ED=
32;再由△AEF∽△DCE,得AF:DE=AE:DC,代值即可求出AF;
(3)讨论:①当AE=DE,点G不存在;②当AE≠DE,存在点G且AG=DE,由△AEF∽△DCE,得AF:DE=AE:DC,当AG=DE,则DG=AE,得到AF:AG=DG:DC,根据三角形相似的判定易得到△AGF∽△DCG.解答:(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=32,
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:32=32:2,
∴AF=98;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.点评:本题考查了三角形相似的判定与性质:有两组对应角相等的三角形相似;有两组对应边的比相等,且它们的夹角相等的两个三角形相似;相似三角形对应边的比相等.也考查了矩形的性质.
(2)由△AEF∽△DCE,根据相似的性质得到AF:ED=EF:CE,同理由△ECF∽△AEF得EF:AF=CE:AE,即AF:AE=EF:CE,则AE=ED=
32;再由△AEF∽△DCE,得AF:DE=AE:DC,代值即可求出AF;
(3)讨论:①当AE=DE,点G不存在;②当AE≠DE,存在点G且AG=DE,由△AEF∽△DCE,得AF:DE=AE:DC,当AG=DE,则DG=AE,得到AF:AG=DG:DC,根据三角形相似的判定易得到△AGF∽△DCG.解答:(1)证明:∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°
又∵EF⊥CE,
∴∠AEF+∠CED=90°,
∴∠AFE=∠CED,
∴△AEF∽△DCE;
(2)∵△AEF∽△DCE,
∴AF:ED=EF:CE,
又∵△ECF∽△AEF,
∴EF:AF=CE:AE,即AF:AE=EF:CE,
∴AE=ED,
而AD=BC=3,
∴AE=ED=32,
又∵△AEF∽△DCE,AB=DC=2,
∴AF:DE=AE:DC,即AF:32=32:2,
∴AF=98;
(3)猜想:①当AE=DE,点G不存在;
②当AE≠DE,存在点G且AG=DE.证明如下:
如图,
∵△AEF∽△DCE,
∴AF:DE=AE:DC,
∵AG=DE,
∴DG=AE,
∴AF:AG=DG:DC,
而∠A=∠D=90°,
∴△AGF∽△DCG.点评:本题考查了三角形相似的判定与性质:有两组对应角相等的三角形相似;有两组对应边的比相等,且它们的夹角相等的两个三角形相似;相似三角形对应边的比相等.也考查了矩形的性质.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询