观察下列算式:15*15=1*2*100+25=225,25*25=2*3*100+25=625,35*35=3*4*100+25=1225
我们猜想:如果用字母代表一个正整数,则有如下规律:(a*10+5)的平方=a(a+1)*100+25.这样的猜想正确吗?如果正确,请写出证明;如果不正确,请说明理由....
我们猜想:如果用字母代表一个正整数,则有如下规律:(a*10+5)的平方=a(a+1)*100+25.这样的猜想正确吗?如果正确,请写出证明;如果不正确,请说明理由.
展开
5个回答
展开全部
(a*10+5)的平方=(a*10+5)*(a*10+5)=a*a*100+2*5*(a*10)+5*5=100*a*a+100a+25=100*(a*a+a)+25=100*(a+1)*a+25。
这不是猜想,直接因式分解就得到这样的结果了。
这不是猜想,直接因式分解就得到这样的结果了。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
猜想正确。
证明:
∵(10a+5)²=(10a)²+2·10a·5+5²
又(10a+5)²=a×(a+1)×100+25
=(a²+a)·100+25
=100a²+100a+25
=(10a)²+2×10a·5+5²
∴采用完全平方公式证明其规律正确。
证明:
∵(10a+5)²=(10a)²+2·10a·5+5²
又(10a+5)²=a×(a+1)×100+25
=(a²+a)·100+25
=100a²+100a+25
=(10a)²+2×10a·5+5²
∴采用完全平方公式证明其规律正确。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
很正确的,
证明:(a*10+5)*(a*10+5)=a*a*100+2*5*(a*10)+5*5=100*a*a+100a+25=100*(a*a+a)+25=100*(a+1)*a+25。
证明:(a*10+5)*(a*10+5)=a*a*100+2*5*(a*10)+5*5=100*a*a+100a+25=100*(a*a+a)+25=100*(a+1)*a+25。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |