设a,b为非零实数,且a^2+b^2=4ab.求(a+b/a-b)^2的值
计算:(a^2-b^2/a^3+b^3)/(a^2-2ab+b^2/a^2-ab+b^2)*1/(b-a)^2...
计算:(a^2-b^2/a^3+b^3)/(a^2-2ab+b^2/a^2-ab+b^2)*1/(b-a)^2
展开
3个回答
展开全部
1.设a,b为非零实数,且a²+b²=4ab.求[(a+b)/(a-b)]²的值
解:a²-2ab+b²=2ab,故(a-b)²=2ab
∴[(a+b)/(a-b)]²=(a+b)²/(a-b)²=(a²+2ab+b²)/2ab=(6ab)/2ab=3
2.计算:[(a²-b²)/(a³+b³)]/[(a²-2ab+b²)/(a²-ab+b²)][1/(b-a)²]
原式=[(a²-b²)/(a³+b³)][(a²-ab+b²)/(a-b)²][1/(a-b)²]
=[(a-b)/(a²-ab+b²)][(a²-ab+b²)/(a-b)²][1/(a-b)²]
=[1/(a-b)][1/(a-b)²]=1/(a-b)³
解:a²-2ab+b²=2ab,故(a-b)²=2ab
∴[(a+b)/(a-b)]²=(a+b)²/(a-b)²=(a²+2ab+b²)/2ab=(6ab)/2ab=3
2.计算:[(a²-b²)/(a³+b³)]/[(a²-2ab+b²)/(a²-ab+b²)][1/(b-a)²]
原式=[(a²-b²)/(a³+b³)][(a²-ab+b²)/(a-b)²][1/(a-b)²]
=[(a-b)/(a²-ab+b²)][(a²-ab+b²)/(a-b)²][1/(a-b)²]
=[1/(a-b)][1/(a-b)²]=1/(a-b)³
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询