设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要过程)
3个回答
展开全部
方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n
解题过程如下:
正态分布的规律,均值X服从N(u,(σ^2)/n)
因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2).
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
扩展资料
正太分布分布曲线
图形特征
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
展开全部
正态分布的规律,均值X服从N(u,(σ^2)/n)
因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2)。
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n
因为X1,X2,X3,...,Xn都服从N(u,σ^2) ,正太分布可加性X1+X2...Xn服从N(nu,nσ^2)。
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-25
展开全部
xx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |