已知x/x²-x+1=2,求x²/(x²)²﹢x²﹢1的值
3个回答
展开全部
(x^2-x+1)/x
=x^2/x-x/x+1/x
=x+1/x-1
=1/2
x+1/x=3/2
[(x^2)^2+x^2+1]/x^2
=(x^4+x^2+1)/x^2
=x^2+1/x^2+1
=x^2+2*x*(1/x)+(1/x)^2-1
=(x+1/x)^2-1
=(3/2)^2-1
=5/4
x^2/[(x^2)^2+x^2+1]=4/5
=x^2/x-x/x+1/x
=x+1/x-1
=1/2
x+1/x=3/2
[(x^2)^2+x^2+1]/x^2
=(x^4+x^2+1)/x^2
=x^2+1/x^2+1
=x^2+2*x*(1/x)+(1/x)^2-1
=(x+1/x)^2-1
=(3/2)^2-1
=5/4
x^2/[(x^2)^2+x^2+1]=4/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x/x²-x+1=2
(x²-x+1)/x=1/2
x-1+1/x=1/2
x+1/x=-1/2
[(x²)²﹢x²﹢1]/x²
=x²+1+1/x²
=(x+1/x)²-1
=1/4-1
=-3/4
∴x²/[(x²)²﹢x²﹢1]=-4/3
(x²-x+1)/x=1/2
x-1+1/x=1/2
x+1/x=-1/2
[(x²)²﹢x²﹢1]/x²
=x²+1+1/x²
=(x+1/x)²-1
=1/4-1
=-3/4
∴x²/[(x²)²﹢x²﹢1]=-4/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x/x²-x+1=2
(x²-x+1)/x=1/2
x+1/x=3/2
[(x²)²﹢x²﹢1]/x^2
=x^2+1/x^2+1
=(x+1/x)^2-1
=(3/2)^2-1
=5/4
x²/(x²)²﹢x²﹢1=1/(5/4)=4/5
(x²-x+1)/x=1/2
x+1/x=3/2
[(x²)²﹢x²﹢1]/x^2
=x^2+1/x^2+1
=(x+1/x)^2-1
=(3/2)^2-1
=5/4
x²/(x²)²﹢x²﹢1=1/(5/4)=4/5
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询