△abc中,a , b. c,为内角A,B,C的对边。且2asinA=(2b+c)sinB+(2c+b)sinC 1.求A 2若sinB+sinc=1问形状
在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)若sinB+sinC=1,试判...
在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)若sinB+sinC=1,试判断三角形ABC的形状。
展开
4个回答
展开全部
解:(1)由正弦定理知:
a:sinA=b:sinB=c:sinC
又2asinA=(2b+c)sinB+(2c+b)sinC
所以2a²=(2b+c)b+(2c+b)c
2a²=2b²+2c²+2bc
即a²=b²+c²+bc
由余弦定理得a²=b²+c²-2bccosA
所以cosA=-1/2
解得:A=120°
(袜猛2)因为sinB+sinC=1
所以2sin[(B+C)/2]cos[(B-C)/2]=1 (*)
又由(1)知A=李弊120°
所以B+C=60°即(B+C)/2=30°
则由 (*)式得哪好族:
2sin30°cos[(B-C)/2]=1
即cos[(B-C)/2]=1
易知(B-C)/2=0°
即B=C
所以三角形ABC是顶角为120°的等腰三角形。
a:sinA=b:sinB=c:sinC
又2asinA=(2b+c)sinB+(2c+b)sinC
所以2a²=(2b+c)b+(2c+b)c
2a²=2b²+2c²+2bc
即a²=b²+c²+bc
由余弦定理得a²=b²+c²-2bccosA
所以cosA=-1/2
解得:A=120°
(袜猛2)因为sinB+sinC=1
所以2sin[(B+C)/2]cos[(B-C)/2]=1 (*)
又由(1)知A=李弊120°
所以B+C=60°即(B+C)/2=30°
则由 (*)式得哪好族:
2sin30°cos[(B-C)/2]=1
即cos[(B-C)/2]=1
易知(B-C)/2=0°
即B=C
所以三角形ABC是顶角为120°的等腰三角形。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询