
求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx
2个回答
展开全部
原式=-∫-π/2到上限π/2dcosx/(2+cosx)
=-∫-π/2到上限π/2d(2+cosx)/(2+cosx)
=-ln(2+cosx)-π/2到上限π/2
=-[ln(2+0)-ln(2-0)]
=0
=-∫-π/2到上限π/2d(2+cosx)/(2+cosx)
=-ln(2+cosx)-π/2到上限π/2
=-[ln(2+0)-ln(2-0)]
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询