已知函数f(x)=(4cos^4x-2cos2x-1)/[sin(π/4+x)·sin^2(π/4-x)]化简
1个回答
展开全部
f(x)=(4cos^4x-2cos2x-1)/[sin(π/4+x)*sin^2(π/4-x)]
=(4cos^4x-4cos²x+1)/[sin(π/4)*cosx+sinx*cos(π/4)*(1-cos(π/2-2x))/2]
=(2cos²x-1)²/[√2/2*(cosx+sinx)*(1-sin2x)/2]
=(cos²x-sin²x)²/[√2/4*(cosx+sinx)*(cosx-sinx)²
=(cosx+sinx)²*(cosx-sinx)²/[√2/4*(cosx+sinx)*(cosx-sinx)²
=2√2*(cosx+sinx)=4*sin(π/4+x)
=(4cos^4x-4cos²x+1)/[sin(π/4)*cosx+sinx*cos(π/4)*(1-cos(π/2-2x))/2]
=(2cos²x-1)²/[√2/2*(cosx+sinx)*(1-sin2x)/2]
=(cos²x-sin²x)²/[√2/4*(cosx+sinx)*(cosx-sinx)²
=(cosx+sinx)²*(cosx-sinx)²/[√2/4*(cosx+sinx)*(cosx-sinx)²
=2√2*(cosx+sinx)=4*sin(π/4+x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询