初中数学重点知识点有哪些?

克莱糖普森
2013-01-17 · TA获得超过175个赞
知道答主
回答量:81
采纳率:0%
帮助的人:20.7万
展开全部
★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)
☆ 内容提要☆
一、 基本概念
1.方程、方程的解(根)、方程组的解、解方程(组)
2. 分类:
二、 解方程的依据—等式性质
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括号→移项→合并同类项→
系数化成1→解。
2. 元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法
②加减法
四、 一元二次方程
1.定义及一般形式:
2.解法:⑴直接开平方法(注意特征)
⑵配方法(注意步骤—推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左边=0)
3.根的判别式:
4.根与系数顶的关系:
逆定理:若 ,则以 为根的一元二次方程是: 。
5.常用等式:
五、 可化为一元二次方程的方程
1.分式方程
⑴定义
⑵基本思想:
⑶基本解法:①去分母法②换元法(如, )
⑷验根及方法
2.无理方程
⑴定义
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法
3.简单的二元二次方程组
由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
六、 列方程(组)解应用题
一概述
列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:
⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。
二常用的相等关系
1. 行程问题(匀速运动)
基本关系:s=vt
⑴相遇问题(同时出发):
+ = ;
⑵追及问题(同时出发):
若甲出发t小时后,乙才出发,而后在B处追上甲,则
⑶水中航行: ;
2. 配料问题:溶质=溶液×浓度
溶液=溶质+溶剂
3.增长率问题:
4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
三注意语言与解析式的互化
如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
四注意从语言叙述中写出相等关系。
如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算
如,“小时”“分钟”的换算;s、v、t单位的一致等。
七、应用举例(略)
第六章 一元一次不等式(组)
★重点★一元一次不等式的性质、解法
☆ 内容提要☆
1. 定义:a>b、a<b、a≥b、a≤b、a≠b。
2. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3. 一元一次不等式组:
4. 不等式的性质:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac<bc(c<0)
⑷(传递性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)
7.应用举例(略)
第七章 相似形
★重点★相似三角形的判定和性质
☆内容提要☆
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
第二套:
注意:①定理中“对应”二字的含义;
②平行→相似(比例线段)→平行。
二、相似三角形性质
1.对应线段…;2.对应周长…;3.对应面积…。
三、相关作图
①作第四比例项;②作比例中项。
四、证(解)题规律、辅助线
1.“等积”变“比例”,“比例”找“相似”。
2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。⑴


3.添加辅助平行线是获得成比例线段和相似三角形的重要途径。
4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。
5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。
五、 应用举例(略)
第八章 函数及其图象
★重点★正、反比例函数,一次、二次函数的图象和性质。
☆ 内容提要☆
一、平面直角坐标系
1.各象限内点的坐标的特点
2.坐标轴上点的坐标的特点
3.关于坐标轴、原点对称的点的坐标的特点
4.坐标平面内点与有序实数对的对应关系
二、函数
1.表示方法:⑴解析法;⑵列表法;⑶图象法。
2.确定自变量取值范围的原则:⑴使代数式有意义;⑵使实际问题有
意义。
3.画函数图象:⑴列表;⑵描点;⑶连线。
三、几种特殊函数
(定义→图象→性质)
1. 正比例函数
⑴定义:y=kx(k≠0) 或y/x=k。
⑵图象:直线(过原点)
⑶性质:①k>0,…②k<0,…
2. 一次函数
⑴定义:y=kx+b(k≠0)
⑵图象:直线过点(0,b)—与y轴的交点和(-b/k,0)—与x轴的交点。
⑶性质:①k>0,…②k<0,…
⑷图象的四种情况:
3. 二次函数
⑴定义:
特殊地, 都是二次函数。
⑵图象:抛物线(用描点法画出:先确定顶点、对称轴、开口方向,再对称地描点)。 用配方法变为 ,则顶点为(h,k);对称轴为直线x=h;a>0时,开口向上;a<0时,开口向下。
⑶性质:a>0时,在对称轴左侧…,右侧…;a<0时,在对称轴左侧…,右侧…。
4.反比例函数
⑴定义: 或xy=k(k≠0)。
⑵图象:双曲线(两支)—用描点法画出。
⑶性质:①k>0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于坐标轴但永远不能到达坐标轴。
四、重要解题方法
1. 用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
2.利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。
m386044599
2011-06-27
知道答主
回答量:12
采纳率:0%
帮助的人:4.6万
展开全部
二次函数,一元二次方程,圆 以及动点问题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友f32ff06
2011-06-27
知道答主
回答量:39
采纳率:0%
帮助的人:19.6万
展开全部
同类项相关 一次方程及不等式组 二次方程 二次函数图象
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
寂寞舆·一直
2011-06-27
知道答主
回答量:27
采纳率:0%
帮助的人:9.1万
展开全部
函数、几何
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
稚龙丸
2011-06-27 · 超过18用户采纳过TA的回答
知道答主
回答量:80
采纳率:0%
帮助的人:53.1万
展开全部
不是有《学科基本要求》吗?写的很清楚啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式