在三角形ABC中,角A=60°,角B、角C的平分线BE、CF相交于点O。求证OE=OF BF+CE=BC 初二题请帮忙解答
1个回答
展开全部
在BC上取BD=BF,连接OD。
因为BF=BD,角ABE=角CBE,BO=BO,
所以,三角形BFO全等于三角形BDO,
所以,角BOF=角BOD,OF=OD。
因为角BOC=角ABE+角BFC=角ABE+角A+角ACF,
而角ABE=角ABC/2,角ACF=角ACB/2,
所以,角BOC=角A+(角ABC+角ACB)/2=角A+(180-角A)/2=90度+角A/2=120度。
所以,角BOF=角BOD=角COD=角COE=60度;
又因为OC=OC,角ACF=角BCF,
所以,三角形COD全等于三角形COE,
所以,OD=OE,CD=CE,
所以,OE=OF,BC=BD+CD=BF+CE。
因为BF=BD,角ABE=角CBE,BO=BO,
所以,三角形BFO全等于三角形BDO,
所以,角BOF=角BOD,OF=OD。
因为角BOC=角ABE+角BFC=角ABE+角A+角ACF,
而角ABE=角ABC/2,角ACF=角ACB/2,
所以,角BOC=角A+(角ABC+角ACB)/2=角A+(180-角A)/2=90度+角A/2=120度。
所以,角BOF=角BOD=角COD=角COE=60度;
又因为OC=OC,角ACF=角BCF,
所以,三角形COD全等于三角形COE,
所以,OD=OE,CD=CE,
所以,OE=OF,BC=BD+CD=BF+CE。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询