3个回答
展开全部
解:因为点(n,sn)都在函数f(x)=2x^2-x上,所以sn=2n^2-n。
即bn=sn/(n+p)=(2n^2-n)/(n+p)=(2n^2)/(n+p)-(n/(n+p))
数列bn是等差数列,而等差数列的通项为bn=b1+(n-1)d=(b1-d)+dn,即bn的通项是关于n的一次函数,所以(2n^2)/(n+p)-(n/(n+p))中只有令p=0 时,才满足题意。
即bn=sn/(n+p)=(2n^2-n)/(n+p)=(2n^2)/(n+p)-(n/(n+p))
数列bn是等差数列,而等差数列的通项为bn=b1+(n-1)d=(b1-d)+dn,即bn的通项是关于n的一次函数,所以(2n^2)/(n+p)-(n/(n+p))中只有令p=0 时,才满足题意。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sn=2n^2-n,则bn=2n^2-n/(n+p),bn是等差数列,那么bn是关于n的一次函数,又bn=2n(n-1)/(n+p),所以一定要消掉分子上的一个n的一次,故p=0或者-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询