三角形ABC中,角BAC=90°,AD垂直于BC于点D,E是AC的中点,求证AB×AF=AC×DF
3个回答
展开全部
证明:
因为AD垂直于BC于点D
所以∠BDC=90°
因为三角形ABC中,∠BAC=90°
所以∠BDC=∠BAC=90°
因为∠BDC=∠BAC,∠BAD=∠BAD
所以三角形BDA与BAC相似
所以∠BAD=∠C,AB/AC=BD/AD
因为点E是斜边AC的中点
所以DE=CE=AE
所以∠C=∠EDC
因为∠BDF=∠EDC
所以∠C=∠BDF
因为∠C=∠BAD
所以∠BDF=∠BAD
因为∠F=∠F,∠BDF=∠BAD
所以三角形FBD与FDA相似
所以BD/AD=DF/AF
因为BD/AD=AB/AC
所以AB/AC=DF/AF
所以,AB×AF=AC×DF
因为AD垂直于BC于点D
所以∠BDC=90°
因为三角形ABC中,∠BAC=90°
所以∠BDC=∠BAC=90°
因为∠BDC=∠BAC,∠BAD=∠BAD
所以三角形BDA与BAC相似
所以∠BAD=∠C,AB/AC=BD/AD
因为点E是斜边AC的中点
所以DE=CE=AE
所以∠C=∠EDC
因为∠BDF=∠EDC
所以∠C=∠BDF
因为∠C=∠BAD
所以∠BDF=∠BAD
因为∠F=∠F,∠BDF=∠BAD
所以三角形FBD与FDA相似
所以BD/AD=DF/AF
因为BD/AD=AB/AC
所以AB/AC=DF/AF
所以,AB×AF=AC×DF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询