二重积分的题
求两个底圆半径为R的直交圆柱面所围的体积求的时候V=8∫∫D(√R2-x2)dxdy=8∫0-R(√R2-x2)dx∫0-√R2-x2dy=8∫0-R(R2-x2)dx=...
求两个底圆半径为R的直交圆柱面所围的体积
求的时候V=8 ∫∫D(√R2-x2 )dxdy=8∫0-R(√R2-x2) dx∫0-√R2-x2 dy=8∫0-R(R2-x2)dx=16R3/3
有几个地方不是很明白 1为什么每个积分前面都乘了8
2第二步是怎么转为第三步的
3 最后结果我求的是8R3/3 展开
求的时候V=8 ∫∫D(√R2-x2 )dxdy=8∫0-R(√R2-x2) dx∫0-√R2-x2 dy=8∫0-R(R2-x2)dx=16R3/3
有几个地方不是很明白 1为什么每个积分前面都乘了8
2第二步是怎么转为第三步的
3 最后结果我求的是8R3/3 展开
5个回答
展开全部
因为积分算的是1/8的。最后算出来的体积要乘以8.
其实这道题不用二重积分做比较简单。沿着x或者y轴切的话,就会发现重合的地方是一个个正方形面积,然后再积起来就可以了。∫(R^2-x^2)dx.积得范围是0到R。得到8*(R^3-R^3/3)就是正确答案了。
要是空间想象能力不强的话,可以去翻翻数分书由平行截面面积求体积,这道很经典。
其实这道题不用二重积分做比较简单。沿着x或者y轴切的话,就会发现重合的地方是一个个正方形面积,然后再积起来就可以了。∫(R^2-x^2)dx.积得范围是0到R。得到8*(R^3-R^3/3)就是正确答案了。
要是空间想象能力不强的话,可以去翻翻数分书由平行截面面积求体积,这道很经典。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.根据图形的对称性,分成8个体积相等的部分,取第一卦限的进行积分,方便计算。
2.这就是计算累次积分里面的单重定积分,注意被积函数与积分限就可以了。积分限画个图形很任意看出来。
http://hi.baidu.com/fjzntlb/album/item/cc9a3cd6688435bda044dfc8.html#
3.我算过了,16R^3/3没错,如果你的方法正确那就是你计算重积分时出错了。
2.这就是计算累次积分里面的单重定积分,注意被积函数与积分限就可以了。积分限画个图形很任意看出来。
http://hi.baidu.com/fjzntlb/album/item/cc9a3cd6688435bda044dfc8.html#
3.我算过了,16R^3/3没错,如果你的方法正确那就是你计算重积分时出错了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1.它有8块一样的图形,只要算第一卦限部分乘以8即可
2.∫(0-√R2-x2) dy=√R2-x2 (积分变量是y,而x为常数)
√R2-x2 乘以 √R2-x2 = R2-x2
从而
8∫(0-R)(√R2-x2) dx∫(0-√R2-x2 )dy=8∫(0-R) (R2-x2)dx
(我给你积分限加上括号)
3.人家8倍你4倍,当然你是8R3/3,他是16R3/3!
2.∫(0-√R2-x2) dy=√R2-x2 (积分变量是y,而x为常数)
√R2-x2 乘以 √R2-x2 = R2-x2
从而
8∫(0-R)(√R2-x2) dx∫(0-√R2-x2 )dy=8∫(0-R) (R2-x2)dx
(我给你积分限加上括号)
3.人家8倍你4倍,当然你是8R3/3,他是16R3/3!
追问
也就是说二重积分 ∫(a-b)dx∫【f1(x)-f2(x)】f(x,y)dy 可以先求前面得出(b-a)∫【f1(x)-f2(x)】f(x,y)dy 是吧?
它的原函数不是-x3/3 吗 代人R 和0 后 得到的是-R3/3 再乘8也就是-8R3/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
要是没人会做、就把分给我吧
改天我请你
改天我请你
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |