用函数单调性定义证明:函数f(x)=x+1/x在(-1,0)上是减函数

crs0723
2011-06-29 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4498万
展开全部
对任意-1<a<b<0
f(a)-f(b)=a+1/a-b-1/b=(a-b)+(1/a-1/b)=(a-b)(1-1/ab)=(a-b)(ab-1)/ab
a-b<0
0<ab<1
所以f(a)-f(b)=(a-b)(ab-1)/ab>0
f(a)>f(b)
所以f(x)在(-1,0)上是减函数
匿名用户
2011-06-29
展开全部
你有病啊,问那么多次,都给你证了两遍了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lizhibin212
2011-06-29 · TA获得超过1117个赞
知道小有建树答主
回答量:248
采纳率:0%
帮助的人:152万
展开全部
设0<x1<x2<1,则:
f(x2)-f(x1)
=(x2+1/x2)-(x1+1/x1)
=(x2-x1)+(1/x2-1/x1)
=(x2-x1)+(x1-x2)/(x1x2)
=(x2-x1)(1-1/(x1x2))
因为0<x1<x2<1
所以x2-x1>0,1/(x1x2)>1,所以f(x2)-f(x1)<0
f(x)在(0,1)为减函数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式