求这个微分方程的通解

y-xy'=a(y*y+y')... y-xy'=a(y*y+y') 展开
xaywgchx
2011-07-01 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2128
采纳率:33%
帮助的人:982万
展开全部
答案;(x + a) / (ax + C)
过程:y - xy' = a(y² + y')
(a + x) y' = y - ay²
dy / [y (1 - ay)] = dx / (x + a)
dy * [1/y + a/(1 - ay)] = dx / (x + a)
Lny - Ln(1 - ay) = Ln(x + a) + C1
y / (1 - ay) = C * (x + a)
y = (x + a)] / [ax + a² + C] = (x + a) / (ax + C) ------------我这里没要区分任意常数
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
932424592
2011-06-30 · TA获得超过9052个赞
知道大有可为答主
回答量:1852
采纳率:0%
帮助的人:1132万
展开全部
先对方程微分 y'-y'-xy''=a(2y*y'+y'')
=>(a+x)y''=-2ay*y' 1
由第一个等式化简的=> (a+x)y'=y-ay^2 2
1/2 得 y''/y'=-2ay'/(1-ay)
对上式子积分
ln|y'|=2ln|1-ay|+C(常数)
y'^2=(1-ay)^2*C1 C1=e^C
2式子平方 (a+x)^2y'^2=(y-ay^2)
=> (a+x)^2(1-ay)^2C1=(y-ay^2)
(1-ay)[y-C1(1-ay)(a+x)^2]=0
下面怎么做 我就不说了
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
novalight
2011-07-01 · TA获得超过4150个赞
知道大有可为答主
回答量:1593
采纳率:100%
帮助的人:642万
展开全部

答案见图

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
名字叫难忘啊DM
高粉答主

2020-02-29 · 醉心答题,欢迎关注
知道答主
回答量:5.8万
采纳率:3%
帮助的人:2814万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式